Trend Detection in Annual Temperature and Precipitation Using Mann–Kendall Test—A Case Study to Assess Climate Change in Abu Dhabi, United Arab Emirates

Author(s):  
Aydin Basarir ◽  
Hasan Arman ◽  
Saber Hussein ◽  
Ahmed Murad ◽  
Ala Aldahan ◽  
...  
2017 ◽  
Vol 132 (3) ◽  
pp. 655-657
Author(s):  
A. Basarir ◽  
H. Arman ◽  
S. Hussein ◽  
A. Murad ◽  
A. Aldahan ◽  
...  

2021 ◽  
Author(s):  
Livia Serrao ◽  
Lorenzo Giovannini ◽  
Luz Elita Balcazar Terrones ◽  
Hugo Alfredo Huamaní Yupanqui ◽  
Dino Zardi

<p>Climatic characteristics and weather events have always conditioned the success of a harvest. Climate change and the associated increase in intense weather phenomena in recent years are making it clearer than ever that agriculture is among the sectors most at risk. Although problems in agriculture are found all over the world, the most vulnerable contexts are those where agriculture is low-tech and rainfed. Here, adaptation strategies are even more urgent to secure the food production. Assuming that the awareness of climate change is the basis for the adoption of adaptation and mitigation strategies, it is interesting to correlate the degree of perception of local inhabitants with their willingness to adopt bottom-up initiatives.</p><p>The current study focuses on banana producers’ perceptions of climate change in a tropical valley, and the initiatives that farmers adopt to cope with recent intense weather events. The banana plant (Musa Musacae) grows in tropical climates with annual rainfall around 2000 mm and average temperatures around 27°C. The species’ threadlike root system and the weak pseudostem make it particularly vulnerable to wind gusts, which, at speeds higher than 15 m/s, can bend and knock over entire plantations. The increased frequency of convective thunderstorms observed in connection with climate change has made downburst phenomena more frequent and caused greater crop loss.</p><p>The aim of the present work is to estimate the correlation between banana producers’ perceptions of climate change and their bottom-up initiatives for adaptation. To achieve this goal, the case study of the Upper Huallaga valley, which is located in the Peruvian Amazon region as shown in Figure 1, is analysed. The work was carried out at two levels: (i) we interviewed 73 banana producers in the valley, (ii) we estimated the alterations and trends in temperature and precipitation recorded by the only three available meteorological stations within the valley. Finally, we compared the two databases to evaluate if the perception of the population was confirmed by the data. Most of the surveyed population observed an increase in temperature, consistent with the results of the data analysis, and an increase in precipitation, which was not consistent with observations as these showed a cyclic variation without a clear trend. With regards to the adaptation measures, it was observed that, although a clear majority of the sample surveyed (around 82%) agreed with the existence of climate change, only 46% of them had taken any initiative to counteract adverse events in some way. However, it is important to note that the strategies implemented were all devised and implemented by the farmers themselves. Funding and coordinating the dissemination of these adaptation practices by the local authority through a rural development plan could certainly strengthen the population’s effort.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.34e8e7df2cff59382630161/sdaolpUECMynit/12UGE&app=m&a=0&c=59f620ca81f3a3bb7bb44139d499513c&ct=x&pn=gnp.elif&d=1" alt=""></p><p><em>Figure 1, On the left side: the Upper Huallaga basin. </em><em>On the right side: the study area</em></p>


1998 ◽  
Vol 49 (4) ◽  
pp. 297 ◽  
Author(s):  
Benno Böer ◽  
Derek Gliddon

A survey of the coastal zone of Abu Dhabi identified 22 halophytes of which nine are tolerant to inundation by seawater. A preliminary assessment suggested that 3.550 km2 of saline land with a complete absence of natural vegetation was potentially suitable for the development of sustainable agro-ecosystems with halophyte crops and seawater irrigation. Such development plans, however, require the implementation of environmental impact assessments. The inter-tidal plant communities need special protection, as they are fragile, and economically and ecologically valuable.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Roman Corobov ◽  
Igor Sîrodoev ◽  
Sonja Koeppel ◽  
Nickolai Denisov ◽  
Ghennadi Sîrodoev

Vulnerability to climate change of the Moldavian part of the Dniester river was assessed as the function of exposure, sensitivity, and adaptive capacity of its basin’s natural and socioeconomic systems. As a spatial “scale” of the assessment, Moldova’s administrative-territorial units (ATUs) were selected. The exposure assessment was based on the climatic analysis of baseline (1971–2000) temperature and precipitation and projections of their changes in 2021–2050, separately for cold and warm periods. The sensitivity assessment included physiographical and socioeconomic characteristics, described by a set of specific indicators. The adaptive capacity was expressed by general economic and agricultural indicators, taking into consideration the medical provision and housing conditions. Through a ranking approach, the relative vulnerability of each ATU was calculated by summing its sensitivity and adaptive capacity ranks; the latter were obtained as combinations of their primary indicator ranks, arranged in an increasing and decreasing order, respectively. Due to lack of sound knowledge on these components' importance in overall assessment of vulnerability, their weights were taken as conventionally equal. Mapping of vulnerability revealed that ATUs neighboring to municipalities are the most vulnerable and need special attention in climate change adaptation. The basin’s “hotspots” were discussed with public participation.


2013 ◽  
Vol 16 (3) ◽  
pp. 710-730 ◽  
Author(s):  
Pao-Shan Yu ◽  
Tao-Chang Yang ◽  
Chen-Min Kuo ◽  
Shien-Tsung Chen

This paper aims to propose a decision support system (DSS) for evaluating the climate change impacts on water supply–demand and inundation; and assessing the risks for water shortage and inundation under future scenarios. The proposed DSS framework is universal and flexible, which comprises five modules integrated by a geographic information system platform, including the modules of (1) scenario rainfall and temperature projection under climate change, (2) impact assessment of water supply–demand, (3) impact assessment of inundation, (4) assessment of vulnerability and risk, and (5) adaptation strategy. A case study in southern Taiwan was performed to demonstrate how the DSS provides information on the climate change impacts and risks under future scenarios. The information is beneficial to the authorities of water resources management for understanding the spatial risks for water shortage and inundation, and planning suitable adaptation strategies for the locations with larger risks.


2015 ◽  
Vol 63 (3) ◽  
pp. 183-192 ◽  
Author(s):  
Andrea Blahušiaková ◽  
Milada Matoušková

Abstract This paper presents an analysis of trends and causes of changes of selected hydroclimatic variables influencing the runoff regime in the upper Hron River basin (Slovakia). Different methods for identifying trends in data series are evaluated and include: simple mass curve analysis, linear regression, frequency analysis of flood events, use of the Indicators of Hydrological Alteration software, and the Mann-Kendall test. Analyses are performed for data from two periods (1931-2010 and 1961-2010). The changes in runoff are significant, especially in terms of lower QMax and 75 percentile values. This fact is also confirmed by the lower frequency and extremity of flood events. The 1980s are considered a turning point in the development of all hydroclimatic variables. The Mann-Kendall test shows a significant decrease in runoff in the winter period. The main causes of runoff decline are: the considerable increase in air temperature, the decrease in snow cover depth and changes in seasonal distribution of precipitation amounts.


Sign in / Sign up

Export Citation Format

Share Document