Network-Based Pedestrian Tracking System with Densely Placed Wireless Access Points

Author(s):  
Ryuta Abe ◽  
Junpei Shimamura ◽  
Kento Hayata ◽  
Hiroaki Togashi ◽  
Hiroshi Furukawa
Author(s):  
Yuan Gong ◽  
Jianning Chi ◽  
Xiaosheng Yu ◽  
Chengdong Wu ◽  
Zixi Jia

Author(s):  
Tomoya Ishikawa ◽  
Masakatsu Kourogi ◽  
Takeshi Kurata

This paper describes an indoor pedestrian tracking system that can economically improve the tracking performance and the quality and value of services by incorporating other services synergistically. The tracking system obtains position, orientation, and action of pedestrians continuously and accurately in large indoor environments by utilizing surveillance cameras and active RFID tags for security services and 3-D environment models for navigation services. Considering service cooperation and co-creative intelligence cycles, this system can improve both the tracking performance and the quality of services without significant increase of costs by sharing the existing infrastructures and the 3-D models among services. The authors conducted an evaluation of the tracking system in a large indoor environment and confirmed that the accuracy of the system can be improved by utilizing the infrastructures and the 3-D models. Synergistic services utilizing the tracking system and service cooperation can also enhance the quality and value of services.


Author(s):  
Dario Di Zenobio ◽  
Massimo Celidonio ◽  
Lorenzo Pulcini ◽  
Arianna Rufini

Broadband Wireless Access is a strategic opportunity for mobile operators which aim to provide connectivity in digital divide areas, in order to accelerate speed of deployment and save in installation costs. This paper presents an innovative approach to access the end user, relying on infrastructural integration of femtocellular technology with existing cabled network. Usually, the adoption of Femtocell Access Points, operating in the licensed cellular bands typically designed to be used in SOHO, improves the radio coverage and the building penetration of the existing mobile networks, based on macrocells. In the proposed solution, the peculiar functionality of femtocells is further improved using a MATV/SMATV cabled infrastructure which facilitates the signal connection inside the building. The potentiality of the solution is even more evident, taking into account the growing interest towards the possible deployment of new mobile technologies, like LTE in both the last portion of the UHF band V and the GSM frequency band, resulting from the re-farming process.


2013 ◽  
Vol 9 (2) ◽  
pp. 123-137 ◽  
Author(s):  
Sungnam Lee ◽  
Yohan Chon ◽  
Hojung Cha

With the widespread use of smartphones, the use of location-based services (LBS) with smartphones has become an active research issue. The accurate measurement of user location is necessary to provide LBS. While outdoor locations are easily obtained with GPS, indoor location information is difficult to acquire. Previous work on indoor location tracking systems often relied on infrastructures that are influenced by environmental changes and temporal differences. Several studies have proposed infrastructure-less systems that are independent of the surroundings, but these works generally required non-trivial computation time or energy costs. In this paper, we propose an infrastructure-less pedestrian tracking system in indoor environments. The system uses accelerometers and magnetic sensors in smartphones without pre-installed infrastructure. We reduced the cumulative error of location tracking by geo-magnetic observations at corners and spots with magnetic fluctuations. In addition, we developed a robust estimation model that is tolerant to false positives, as well as a mobility model that reflects the characteristics of multiple sensors. Extensive evaluation in a real environment indicates that our system is accurate and cost-effective.


Sign in / Sign up

Export Citation Format

Share Document