Microstructures of Oxide Films Formed in Alloy 182 BWR Core Shroud Support Leg Cracks

Author(s):  
Jiaxin Chen ◽  
Daniel Jädernäs ◽  
Fredrik Lindberg ◽  
Henrik Pettersson ◽  
Martin Bjurman ◽  
...  
Keyword(s):  
Author(s):  
Daniel Bremberg ◽  
Jens Gunnars ◽  
Etienne Bonnaud ◽  
Lars-Olof Edling ◽  
Ed Kingston

Internal components in nuclear reactor pressure vessels are joined to the ferritic vessel by use of dissimilar metal welds which commonly include nickel base weld material Alloy 182. It has turned out that Alloy 182 sometimes is susceptible to stress corrosion cracking (SCC) for the operating environment in reactors. Tensile residual stress has a large influence on SCC and it is important to carefully characterize the residual stresses generated at manufacturing. The manufacturing of these welds includes welding Alloy 182 to the ferritic steel to form a buttering, post-weld heat treatment (PWHT) of the buttering, and finally attachment welding between the internal component and the buttering. An experimental program was designed for measurement and numerical analysis for validation of residual stresses in a nickel base Alloy 182 weld between the core shroud support leg and reactor pressure vessel. Two full-scale mock-ups were manufactured according to the original procedures for the buttering to the ferritic steel and the final attachment weld to the core shroud support. The mock-up was also carefully designed to produce correct boundary conditions for the support leg. Measurements were performed by the deep-hole drilling technique (DHD/iDHD). The residual stress fields from welding and heat treatments were predicted by detailed numerical modelling. Comparison between the numerical results and the measurement results shows very good agreement and validates the predicted residual stresses. It was concluded that the PWHT of the vessel only partly relieve weld residual stresses in the nickel base buttering.


Author(s):  
R.A. Ploc

The optic axis of an electron microscope objective lens is usually assumed to be straight and co-linear with the mechanical center. No reason exists to assume such perfection and, indeed, simple reasoning suggests that it is a complicated curve. A current centered objective lens with a non-linear optic axis when used in conjunction with other lenses, leads to serious image errors if the nature of the specimen is such as to produce intense inelastic scattering.


Author(s):  
T. A. Emma ◽  
M. P. Singh

Optical quality zinc oxide films have been characterized using reflection electron diffraction (RED), replication electron microscopy (REM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Significant microstructural differences were observed between rf sputtered films and planar magnetron rf sputtered films. Piezoelectric materials have been attractive for applications to integrated optics since they provide an active medium for signal processing. Among the desirable physical characteristics of sputtered ZnO films used for this and related applications are a highly preferred crystallographic texture and relatively smooth surfaces. It has been found that these characteristics are very sensitive to the type and condition of the substrate and to the several sputtering parameters: target, rf power, gas composition and substrate temperature.


1988 ◽  
Vol 49 (C4) ◽  
pp. C4-409-C4-412 ◽  
Author(s):  
C. BOURREAU ◽  
Y. CATHERINE

2003 ◽  
Vol 91 ◽  
pp. 126-128
Author(s):  
Yoshinori Yomura

Sign in / Sign up

Export Citation Format

Share Document