Hybrid Heuristic for the Clustered Orienteering Problem

Author(s):  
Ala-Eddine Yahiaoui ◽  
Aziz Moukrim ◽  
Mehdi Serairi
Author(s):  
Qinxiao Yu ◽  
Yossiri Adulyasak ◽  
Louis-Martin Rousseau ◽  
Ning Zhu ◽  
Shoufeng Ma

This paper studies the team orienteering problem, where the arrival time and service time affect the collection of profits. Such interactions result in a nonconcave profit function. This problem integrates the aspect of time scheduling into the routing decision, which can be applied in humanitarian search and rescue operations where the survival rate declines rapidly. Rescue teams are needed to help trapped people in multiple affected sites, whereas the number of people who could be saved depends as well on how long a rescue team spends at each site. Efficient allocation and scheduling of rescue teams is critical to ensure a high survival rate. To solve the problem, we formulate a mixed-integer nonconcave programming model and propose a Benders branch-and-cut algorithm, along with valid inequalities for tightening the upper bound. To solve it more effectively, we introduce a hybrid heuristic that integrates a modified coordinate search (MCS) into an iterated local search. Computational results show that valid inequalities significantly reduce the optimality gap, and the proposed exact method is capable of solving instances where the mixed-integer nonlinear programming solver SCIP fails in finding an optimal solution. In addition, the proposed MCS algorithm is highly efficient compared with other benchmark approaches, whereas the hybrid heuristic is proven to be effective in finding high-quality solutions within short computing times. We also demonstrate the performance of the heuristic with the MCS using instances with up to 100 customers. Summary of Contribution: Motivated by search and rescue (SAR) operations, we consider a generalization of the well-known team orienteering problem (TOP) to incorporate a nonlinear time-varying profit function in conjunction with routing and scheduling decisions. This paper expands the envelope of operations research and computing in several ways. To address the scalability issue of this highly complex combinatorial problem in an exact manner, we propose a Benders branch-and-cut (BBC) algorithm, which allows us to efficiently deal with the nonconcave component. This BBC algorithm is computationally enhanced through valid inequalities used to strengthen the bounds of the BBC. In addition, we propose a highly efficient hybrid heuristic that integrates a modified coordinate search into an iterated local search. It can quickly produce high-quality solutions to this complex problem. The performance of our solution algorithms is demonstrated through a series of computational experiments.


2014 ◽  
Vol 13 (1) ◽  
pp. 4127-4145
Author(s):  
Madhushi Verma ◽  
Mukul Gupta ◽  
Bijeeta Pal ◽  
Prof. K. K. Shukla

Orienteering problem (OP) is an NP-Hard graph problem. The nodes of the graph are associated with scores or rewards and the edges with time delays. The goal is to obtain a Hamiltonian path connecting the two necessary check points, i.e. the source and the target along with a set of control points such that the total collected score is maximized within a specified time limit. OP finds application in several fields like logistics, transportation networks, tourism industry, etc. Most of the existing algorithms for OP can only be applied on complete graphs that satisfy the triangle inequality. Real-life scenario does not guarantee that there exists a direct link between all control point pairs or the triangle inequality is satisfied. To provide a more practical solution, we propose a stochastic greedy algorithm (RWS_OP) that uses the roulette wheel selectionmethod, does not require that the triangle inequality condition is satisfied and is capable of handling both complete as well as incomplete graphs. Based on several experiments on standard benchmark data we show that RWS_OP is faster, more efficient in terms of time budget utilization and achieves a better performance in terms of the total collected score ascompared to a recently reported algorithm for incomplete graphs.


2014 ◽  
Vol 24 (7) ◽  
pp. 1589-1600
Author(s):  
Zong-Zhang ZHANG ◽  
Xiao-Ping CHEN

2013 ◽  
Author(s):  
Jesse Pietz ◽  
Johannes O. Royset
Keyword(s):  

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 219
Author(s):  
Xiang Tian ◽  
Xiyu Liu

In real industrial engineering, job shop scheduling problem (JSSP) is considered to be one of the most difficult and tricky non-deterministic polynomial-time (NP)-hard problems. This study proposes a new hybrid heuristic algorithm for solving JSSP inspired by the tissue-like membrane system. The framework of the proposed algorithm incorporates improved genetic algorithms (GA), modified rumor particle swarm optimization (PSO), and fine-grained local search methods (LSM). To effectively alleviate the premature convergence of GA, the improved GA uses adaptive crossover and mutation probabilities. Taking into account the improvement of the diversity of the population, the rumor PSO is discretized to interactively optimize the population. In addition, a local search operator incorporating critical path recognition is designed to enhance the local search ability of the population. Experiment with 24 benchmark instances show that the proposed algorithm outperforms other latest comparative algorithms, and hybrid optimization strategies that complement each other in performance can better break through the original limitations of the single meta-heuristic method.


Sign in / Sign up

Export Citation Format

Share Document