Maximal Sub-prevalent Co-location Patterns and Efficient Mining Algorithms

Author(s):  
Lizhen Wang ◽  
Xuguang Bao ◽  
Lihua Zhou ◽  
Hongmei Chen
Author(s):  
C. Zhou ◽  
W. D. Xiao ◽  
D. Q. Tang

Due to the widespread application of geographic information systems (GIS) and GPS technology and the increasingly mature infrastructure for data collection, sharing, and integration, more and more research domains have gained access to high-quality geographic data and created new ways to incorporate spatial information and analysis in various studies. There is an urgent need for effective and efficient methods to extract unknown and unexpected information, e.g., co-location patterns, from spatial datasets of high dimensionality and complexity. A co-location pattern is defined as a subset of spatial items whose instances are often located together in spatial proximity. Current co-location mining algorithms are unable to quantify the spatial proximity of a co-location pattern. We propose a co-location pattern miner aiming to discover co-location patterns in a multidimensional spatial data by measuring the cohesion of a pattern. We present a model to measure the cohesion in an attempt to improve the efficiency of existing methods. The usefulness of our method is demonstrated by applying them on the publicly available spatial data of the city of Antwerp in Belgium. The experimental results show that our method is more efficient than existing methods.


Author(s):  
C. Zhou ◽  
W. D. Xiao ◽  
D. Q. Tang

Due to the widespread application of geographic information systems (GIS) and GPS technology and the increasingly mature infrastructure for data collection, sharing, and integration, more and more research domains have gained access to high-quality geographic data and created new ways to incorporate spatial information and analysis in various studies. There is an urgent need for effective and efficient methods to extract unknown and unexpected information, e.g., co-location patterns, from spatial datasets of high dimensionality and complexity. A co-location pattern is defined as a subset of spatial items whose instances are often located together in spatial proximity. Current co-location mining algorithms are unable to quantify the spatial proximity of a co-location pattern. We propose a co-location pattern miner aiming to discover co-location patterns in a multidimensional spatial data by measuring the cohesion of a pattern. We present a model to measure the cohesion in an attempt to improve the efficiency of existing methods. The usefulness of our method is demonstrated by applying them on the publicly available spatial data of the city of Antwerp in Belgium. The experimental results show that our method is more efficient than existing methods.


2016 ◽  
Vol 46 (1) ◽  
pp. 115-129 ◽  
Author(s):  
Ralph B. McLAUGHLIN ◽  
Neil REID ◽  
Michael S. MOORE

2019 ◽  
Vol 14 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Viswam Subeesh ◽  
Eswaran Maheswari ◽  
Hemendra Singh ◽  
Thomas Elsa Beulah ◽  
Ann Mary Swaroop

Background: The signal is defined as “reported information on a possible causal relationship between an adverse event and a drug, of which the relationship is unknown or incompletely documented previously”. Objective: To detect novel adverse events of iloperidone by disproportionality analysis in FDA database of Adverse Event Reporting System (FAERS) using Data Mining Algorithms (DMAs). Methodology: The US FAERS database consists of 1028 iloperidone associated Drug Event Combinations (DECs) which were reported from 2010 Q1 to 2016 Q3. We consider DECs for disproportionality analysis only if a minimum of ten reports are present in database for the given adverse event and which were not detected earlier (in clinical trials). Two data mining algorithms, namely, Reporting Odds Ratio (ROR) and Information Component (IC) were applied retrospectively in the aforementioned time period. A value of ROR-1.96SE>1 and IC- 2SD>0 were considered as the threshold for positive signal. Results: The mean age of the patients of iloperidone associated events was found to be 44years [95% CI: 36-51], nevertheless age was not mentioned in twenty-one reports. The data mining algorithms exhibited positive signal for akathisia (ROR-1.96SE=43.15, IC-2SD=2.99), dyskinesia (21.24, 3.06), peripheral oedema (6.67,1.08), priapism (425.7,9.09) and sexual dysfunction (26.6-1.5) upon analysis as those were well above the pre-set threshold. Conclusion: Iloperidone associated five potential signals were generated by data mining in the FDA AERS database. The result requires an integration of further clinical surveillance for the quantification and validation of possible risks for the adverse events reported of iloperidone.


Sign in / Sign up

Export Citation Format

Share Document