A Comparative Study of Modern Machine Learning Approaches for Focal Lesion Detection and Classification in Medical Images: BoVW, CNN and MTANN

Author(s):  
Nima Tajbakhsh ◽  
Kenji Suzuki
JAMIA Open ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 87-98 ◽  
Author(s):  
Fengyi Tang ◽  
Cao Xiao ◽  
Fei Wang ◽  
Jiayu Zhou

Abstract Objective The growing availability of rich clinical data such as patients’ electronic health records provide great opportunities to address a broad range of real-world questions in medicine. At the same time, artificial intelligence and machine learning (ML)-based approaches have shown great premise on extracting insights from those data and helping with various clinical problems. The goal of this study is to conduct a systematic comparative study of different ML algorithms for several predictive modeling problems in urgent care. Design We assess the performance of 4 benchmark prediction tasks (eg mortality and prediction, differential diagnostics, and disease marker discovery) using medical histories, physiological time-series, and demographics data from the Medical Information Mart for Intensive Care (MIMIC-III) database. Measurements For each given task, performance was estimated using standard measures including the area under the receiver operating characteristic (AUC) curve, F-1 score, sensitivity, and specificity. Microaveraged AUC was used for multiclass classification models. Results and Discussion Our results suggest that recurrent neural networks show the most promise in mortality prediction where temporal patterns in physiologic features alone can capture in-hospital mortality risk (AUC > 0.90). Temporal models did not provide additional benefit compared to deep models in differential diagnostics. When comparing the training–testing behaviors of readmission and mortality models, we illustrate that readmission risk may be independent of patient stability at discharge. We also introduce a multiclass prediction scheme for length of stay which preserves sensitivity and AUC with outliers of increasing duration despite decrease in sample size.


Metagenomics ◽  
2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Hayssam Soueidan ◽  
Macha Nikolski

AbstractOwing to the complexity and variability of metagenomic studies, modern machine learning approaches have seen increased usage to answer a variety of question encompassing the full range of metagenomic NGS data analysis.We review here the contribution of machine learning techniques for the field of metagenomics, by presenting known successful approaches in a unified framework. This review focuses on five important metagenomic problems:OTU-clustering, binning, taxonomic proffiing and assignment, comparative metagenomics and gene prediction. For each of these problems, we identify the most prominent methods, summarize the machine learning approaches used and put them into perspective of similar methods.We conclude our review looking further ahead at the challenge posed by the analysis of interactions within microbial communities and different environments, in a field one could call “integrative metagenomics”.


2018 ◽  
Vol 132 ◽  
pp. 1552-1561 ◽  
Author(s):  
Abhilasha Singh Rathor ◽  
Amit Agarwal ◽  
Preeti Dimri

2020 ◽  
Vol 5 (8) ◽  
pp. 62
Author(s):  
Clint Morris ◽  
Jidong J. Yang

Generating meaningful inferences from crash data is vital to improving highway safety. Classic statistical methods are fundamental to crash data analysis and often regarded for their interpretability. However, given the complexity of crash mechanisms and associated heterogeneity, classic statistical methods, which lack versatility, might not be sufficient for granular crash analysis because of the high dimensional features involved in crash-related data. In contrast, machine learning approaches, which are more flexible in structure and capable of harnessing richer data sources available today, emerges as a suitable alternative. With the aid of new methods for model interpretation, the complex machine learning models, previously considered enigmatic, can be properly interpreted. In this study, two modern machine learning techniques, Linear Discriminate Analysis and eXtreme Gradient Boosting, were explored to classify three major types of multi-vehicle crashes (i.e., rear-end, same-direction sideswipe, and angle) occurred on Interstate 285 in Georgia. The study demonstrated the utility and versatility of modern machine learning methods in the context of crash analysis, particularly in understanding the potential features underlying different crash patterns on freeways.


Sign in / Sign up

Export Citation Format

Share Document