Galilean complex Sine-Gordon equation: symmetries, soliton solutions and gauge coupling

Author(s):  
Genilson de Melo ◽  
Marc de Montigny ◽  
James Pinfold ◽  
Jack Tuszynski

Proc. R. Soc. Lond . A 359, 479-495 (1978) Exact, multiple soliton solutions of the double sine Gordon equation By P. G. Burt Equation (A 10), exponent of P should read - 1/(2 p ). Equation (A 15), exponents of P should read - 1/(2 p ) and - (1/(2 p ) + 1) respectively. Proc. R. Soc. Lond . A 362, 281-303 (1978) The Bakerian Lecture, 1977: in vitro models for photosynthesis By Sir George Porter, F. R. S. Page 300, line —8: for λ < 455 nm read λ > 455 nm


2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
Y Hanif ◽  
U Saleem

Abstract We study the discrete Darboux transformation and construct multi-soliton solutions in terms of the ratio of determinants for the integrable discrete sine-Gordon equation. We also calculate explicit expressions of single-, double-, triple-, and quadruple-soliton solutions as well as single- and double-breather solutions of the discrete sine-Gordon equation. The dynamical features of discrete kinks and breathers are also illustrated.


There are several different classes of differential equations that may be described as ‘integrable’ or ‘solvable’. For example, there are completely integrable dynamical systems; equations such as the sine—Gordon equation, which admit soliton solutions; and the self-dual gauge-field equations in four dimensions (with generalizations in arbitrarily large dimension). This lecture discusses two ideas that link all of these together: one is the Painlevé property, which says (roughly speaking) that all solutions to the equations are meromorphic; the other is that many of the equations are special cases (i.e. reductions) of others.


2009 ◽  
Vol 23 (04) ◽  
pp. 607-621 ◽  
Author(s):  
SONG-LIN ZHAO ◽  
HONG-HAI HAO ◽  
DA-JUN ZHANG

We derive multi-soliton solutions for a non-isospectral mKdV–sine-Gordon equation by means of a bilinear approach. Solutions are given in both Hirota's form and Wronskian form. This non-isospectral equation is a generic one which is related to a time-dependent spectral parameter with time evolution [Formula: see text].


Like a number of other nonlinear dispersive wave equations the sine–Gordonequation z , xt = sin z has both multi-soliton solutions and an infinity of conserved densities which are polynomials in z , x , z , xx , etc. We prove that the generalized sine–Gordon equation z , xt = F ( z ) has an infinity of such polynomial conserved densities if, and only if, F ( z ) = A e αz + B e – αz for complex valued A, B and α ≠ 0. If F ( z ) does not take the form A e αz + B e βz there is no p. c. d. of rank greater than two. If α ≠ – β there is only a finite number of p. c. ds. If α = – β then if A and B are non-zero all p. c. ds are of even rank; if either A or B vanishes the p. c. ds are of both even and odd ranks. We exhibit the first eleven p. c. ds in each case when α = – β and the first eight when α ≠ – β . Neither the odd rank p. c. ds in the case α = – β , nor the particular limited set of p. c. ds in the case when α ≠ – β have been reported before. We connect the existence of an infinity of p. c. ds with solutions of the equations through an inverse scattering method, with Bäcklund transformations and, via Noether’s theorem, with infinitesimal Bäcklund transformations. All equations with Bäcklund transformations have an infinity of p. c. ds but not all such p. c. ds can be generated from the Bäcklund transformations. We deduce that multiple sine–Gordon equations like z , xt = sin z + ½ sin ½ z , which have applications in the theory of short optical pulse propagation, do not have an infinity of p. c. ds. For these equations we find essentially three conservation laws: one and only one of these is a p. c. d. and this is of rank two. We conclude that the multiple sine–Gordons will not be soluble by present formulations of the inverse scattering method despite numerical solutions which show soliton like behaviour. Results and conclusions are wholly consistent with the theorem that the generalized sine–Gordon equation has auto-Bäcklund transformations if, and only if Ḟ ( z ) – α 2 F ( z ) = 0.


Sign in / Sign up

Export Citation Format

Share Document