Large-Scale Bandit Approaches for Recommender Systems

Author(s):  
Qian Zhou ◽  
XiaoFang Zhang ◽  
Jin Xu ◽  
Bin Liang
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mehdi Srifi ◽  
Ahmed Oussous ◽  
Ayoub Ait Lahcen ◽  
Salma Mouline

AbstractVarious recommender systems (RSs) have been developed over recent years, and many of them have concentrated on English content. Thus, the majority of RSs from the literature were compared on English content. However, the research investigations about RSs when using contents in other languages such as Arabic are minimal. The researchers still neglect the field of Arabic RSs. Therefore, we aim through this study to fill this research gap by leveraging the benefit of recent advances in the English RSs field. Our main goal is to investigate recent RSs in an Arabic context. For that, we firstly selected five state-of-the-art RSs devoted originally to English content, and then we empirically evaluated their performance on Arabic content. As a result of this work, we first build four publicly available large-scale Arabic datasets for recommendation purposes. Second, various text preprocessing techniques have been provided for preparing the constructed datasets. Third, our investigation derived well-argued conclusions about the usage of modern RSs in the Arabic context. The experimental results proved that these systems ensure high performance when applied to Arabic content.


2021 ◽  
Author(s):  
Shalin Shah

Recommender systems aim to personalize the experience of user by suggesting items to the user based on the preferences of a user. The preferences are learned from the user’s interaction history or through explicit ratings that the user has given to the items. The system could be part of a retail website, an online bookstore, a movie rental service or an online education portal and so on. In this paper, I will focus on matrix factorization algorithms as applied to recommender systems and discuss the singular value decomposition, gradient descent-based matrix factorization and parallelizing matrix factorization for large scale applications.


2019 ◽  
Vol 28 (05) ◽  
pp. 1950019 ◽  
Author(s):  
Nicolás Torres ◽  
Marcelo Mendoza

Clustering-based recommender systems bound the seek of similar users within small user clusters providing fast recommendations in large-scale datasets. Then groups can naturally be distributed into different data partitions scaling up in the number of users the recommender system can handle. Unfortunately, while the number of users and items included in a cluster solution increases, the performance in terms of precision of a clustering-based recommender system decreases. We present a novel approach that introduces a cluster-based distance function used for neighborhood computation. In our approach, clusters generated from the training data provide the basis for neighborhood selection. Then, to expand the search of relevant users, we use a novel measure that can exploit the global cluster structure to infer cluster-outside user’s distances. Empirical studies on five widely known benchmark datasets show that our proposal is very competitive in terms of precision, recall, and NDCG. However, the strongest point of our method relies on scalability, reaching speedups of 20× in a sequential computing evaluation framework and up to 100× in a parallel architecture. These results show that an efficient implementation of our cluster-based CF method can handle very large datasets providing also good results in terms of precision, avoiding the high computational costs involved in the application of more sophisticated techniques.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Hanwen Liu ◽  
Huaizhen Kou ◽  
Chao Yan ◽  
Lianyong Qi

Nowadays, scholar recommender systems often recommend academic papers based on users’ personalized retrieval demands. Typically, a recommender system analyzes the keywords typed by a user and then returns his or her preferred papers, in an efficient and economic manner. In practice, one paper often contains partial keywords that a user is interested in. Therefore, the recommender system needs to return the user a set of papers that collectively covers all the queried keywords. However, existing recommender systems only use the exact keyword matching technique for recommendation decisions, while neglecting the correlation relationships among different papers. As a consequence, it may output a set of papers from multiple disciplines that are different from the user’s real research field. In view of this shortcoming, we propose a keyword-driven and popularity-aware paper recommendation approach based on an undirected paper citation graph, named PRkeyword+pop. At last, we conduct large-scale experiments on the real-life Hep-Th dataset to further demonstrate the usefulness and feasibility of PRkeyword+pop. Experimental results prove the advantages of PRkeyword+pop in searching for a set of satisfactory papers compared with other competitive approaches.


2015 ◽  
Vol 22 (2) ◽  
pp. 1-23 ◽  
Author(s):  
Joseph A. Konstan ◽  
J. D. Walker ◽  
D. Christopher Brooks ◽  
Keith Brown ◽  
Michael D. Ekstrand

Sign in / Sign up

Export Citation Format

Share Document