scholarly journals Evaluation of recent advances in recommender systems on Arabic content

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mehdi Srifi ◽  
Ahmed Oussous ◽  
Ayoub Ait Lahcen ◽  
Salma Mouline

AbstractVarious recommender systems (RSs) have been developed over recent years, and many of them have concentrated on English content. Thus, the majority of RSs from the literature were compared on English content. However, the research investigations about RSs when using contents in other languages such as Arabic are minimal. The researchers still neglect the field of Arabic RSs. Therefore, we aim through this study to fill this research gap by leveraging the benefit of recent advances in the English RSs field. Our main goal is to investigate recent RSs in an Arabic context. For that, we firstly selected five state-of-the-art RSs devoted originally to English content, and then we empirically evaluated their performance on Arabic content. As a result of this work, we first build four publicly available large-scale Arabic datasets for recommendation purposes. Second, various text preprocessing techniques have been provided for preparing the constructed datasets. Third, our investigation derived well-argued conclusions about the usage of modern RSs in the Arabic context. The experimental results proved that these systems ensure high performance when applied to Arabic content.

Author(s):  
Jun Zhou ◽  
Longfei Li ◽  
Ziqi Liu ◽  
Chaochao Chen

Recently, Factorization Machine (FM) has become more and more popular for recommendation systems due to its effectiveness in finding informative interactions between features. Usually, the weights for the interactions are learned as a low rank weight matrix, which is formulated as an inner product of two low rank matrices. This low rank matrix can help improve the generalization ability of Factorization Machine. However, to choose the rank properly, it usually needs to run the algorithm for many times using different ranks, which clearly is inefficient for some large-scale datasets. To alleviate this issue, we propose an Adaptive Boosting framework of Factorization Machine (AdaFM), which can adaptively search for proper ranks for different datasets without re-training. Instead of using a fixed rank for FM, the proposed algorithm will gradually increase its rank according to its performance until the performance does not grow. Extensive experiments are conducted to validate the proposed method on multiple large-scale datasets. The experimental results demonstrate that the proposed method can be more effective than the state-of-the-art Factorization Machines.


Author(s):  
Markus Endres ◽  
Lena Rudenko

A skyline query retrieves all objects in a dataset that are not dominated by other objects according to some given criteria. There exist many skyline algorithms which can be classified into generic, index-based, and lattice-based algorithms. This chapter takes a tour through lattice-based skyline algorithms. It summarizes the basic concepts and properties, presents high-performance parallel approaches, shows how one overcomes the low-cardinality restriction of lattice structures, and finally presents an application on data streams for real-time skyline computation. Experimental results on synthetic and real datasets show that lattice-based algorithms outperform state-of-the-art skyline techniques, and additionally have a linear runtime complexity.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jiaxi Ye ◽  
Ruilin Li ◽  
Bin Zhang

Directed fuzzing is a practical technique, which concentrates its testing energy on the process toward the target code areas, while costing little on other unconcerned components. It is a promising way to make better use of available resources, especially in testing large-scale programs. However, by observing the state-of-the-art-directed fuzzing engine (AFLGo), we argue that there are two universal limitations, the balance problem between the exploration and the exploitation and the blindness in mutation toward the target code areas. In this paper, we present a new prototype RDFuzz to address these two limitations. In RDFuzz, we first introduce the frequency-guided strategy in the exploration and improve its accuracy by adopting the branch-level instead of the path-level frequency. Then, we introduce the input-distance-based evaluation strategy in the exploitation stage and present an optimized mutation to distinguish and protect the distance sensitive input content. Moreover, an intertwined testing schedule is leveraged to perform the exploration and exploitation in turn. We test RDFuzz on 7 benchmarks, and the experimental results demonstrate that RDFuzz is skilled at driving the program toward the target code areas, and it is not easily stuck by the balance problem of the exploration and the exploitation.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Hanwen Liu ◽  
Huaizhen Kou ◽  
Chao Yan ◽  
Lianyong Qi

Nowadays, scholar recommender systems often recommend academic papers based on users’ personalized retrieval demands. Typically, a recommender system analyzes the keywords typed by a user and then returns his or her preferred papers, in an efficient and economic manner. In practice, one paper often contains partial keywords that a user is interested in. Therefore, the recommender system needs to return the user a set of papers that collectively covers all the queried keywords. However, existing recommender systems only use the exact keyword matching technique for recommendation decisions, while neglecting the correlation relationships among different papers. As a consequence, it may output a set of papers from multiple disciplines that are different from the user’s real research field. In view of this shortcoming, we propose a keyword-driven and popularity-aware paper recommendation approach based on an undirected paper citation graph, named PRkeyword+pop. At last, we conduct large-scale experiments on the real-life Hep-Th dataset to further demonstrate the usefulness and feasibility of PRkeyword+pop. Experimental results prove the advantages of PRkeyword+pop in searching for a set of satisfactory papers compared with other competitive approaches.


2020 ◽  
Vol 34 (04) ◽  
pp. 4634-4641
Author(s):  
Mingming Li ◽  
Shuai Zhang ◽  
Fuqing Zhu ◽  
Wanhui Qian ◽  
Liangjun Zang ◽  
...  

Metric learning based methods have attracted extensive interests in recommender systems. Current methods take the user-centric way in metric space to ensure the distance between user and negative item to be larger than that between the current user and positive item by a fixed margin. While they ignore the relations among positive item and negative item. As a result, these two items might be positioned closely, leading to incorrect results. Meanwhile, different users usually have different preferences, the fixed margin used in those methods can not be adaptive to various user biases, and thus decreases the performance as well. To address these two problems, a novel Symmetic Metric Learning with adaptive margin (SML) is proposed. In addition to the current user-centric metric, it symmetically introduces a positive item-centric metric which maintains closer distance from positive items to user, and push the negative items away from the positive items at the same time. Moreover, the dynamically adaptive margins are well trained to mitigate the impact of bias. Experimental results on three public recommendation datasets demonstrate that SML produces a competitive performance compared with several state-of-the-art methods.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1952 ◽  
Author(s):  
Santanu Mukherjee ◽  
Shakir Bin Mujib ◽  
Davi Soares ◽  
Gurpreet Singh

Sodium ion batteries (SIBs) are being billed as an economical and environmental alternative to lithium ion batteries (LIBs), especially for medium and large-scale stationery and grid storage. However, SIBs suffer from lower capacities, energy density and cycle life performance. Therefore, in order to be more efficient and feasible, novel high-performance electrodes for SIBs need to be developed and researched. This review aims to provide an exhaustive discussion about the state-of-the-art in novel high-performance anodes and cathodes being currently analyzed, and the variety of advantages they demonstrate in various critically important parameters, such as electronic conductivity, structural stability, cycle life, and reversibility.


2021 ◽  
Vol 8 (2) ◽  
pp. 273-287
Author(s):  
Xuewei Bian ◽  
Chaoqun Wang ◽  
Weize Quan ◽  
Juntao Ye ◽  
Xiaopeng Zhang ◽  
...  

AbstractRecent learning-based approaches show promising performance improvement for the scene text removal task but usually leave several remnants of text and provide visually unpleasant results. In this work, a novel end-to-end framework is proposed based on accurate text stroke detection. Specifically, the text removal problem is decoupled into text stroke detection and stroke removal; we design separate networks to solve these two subproblems, the latter being a generative network. These two networks are combined as a processing unit, which is cascaded to obtain our final model for text removal. Experimental results demonstrate that the proposed method substantially outperforms the state-of-the-art for locating and erasing scene text. A new large-scale real-world dataset with 12,120 images has been constructed and is being made available to facilitate research, as current publicly available datasets are mainly synthetic so cannot properly measure the performance of different methods.


2021 ◽  
Vol 7 ◽  
pp. e824
Author(s):  
Yiren Li ◽  
Tieke Li ◽  
Pei Shen ◽  
Liang Hao ◽  
Wenjing Liu ◽  
...  

Microservice-based Web Systems (MWS), which provide a fundamental infrastructure for constructing large-scale cloud-based Web applications, are designed as a set of independent, small and modular microservices implementing individual tasks and communicating with messages. This microservice-based architecture offers great application scalability, but meanwhile incurs complex and reactive autoscaling actions that are performed dynamically and periodically based on current workloads. However, this problem has thus far remained largely unexplored. In this paper, we formulate a problem of Dynamic Resource Scheduling for Microservice-based Web Systems (DRS-MWS) and propose a similarity-based heuristic scheduling algorithm that aims to quickly find viable scheduling schemes by utilizing solutions to similar problems. The performance superiority of the proposed scheduling solution in comparison with three state-of-the-art algorithms is illustrated by experimental results generated through a well-known microservice benchmark on disparate computing nodes in public clouds.


Author(s):  
Xiaodong Gu ◽  
Hongyu Zhang ◽  
Dongmei Zhang ◽  
Sunghun Kim

Computer programs written in one language are often required to be ported to other languages to support multiple devices and environments. When programs use language specific APIs (Application Programming Interfaces), it is very challenging to migrate these APIs to the corresponding APIs written in other languages. Existing approaches mine API mappings from projects that have corresponding versions in two languages. They rely on the sparse availability of bilingual projects, thus producing a limited number of API mappings. In this paper, we propose an intelligent system called DeepAM for automatically mining API mappings from a large-scale code corpus without bilingual projects. The key component of DeepAM is based on the multi-modal sequence to sequence learning architecture that aims to learn joint semantic representations of bilingual API sequences from big source code data. Experimental results indicate that DeepAM significantly increases the accuracy of API mappings as well as the number of API mappings when compared with the state-of-the-art approaches.


2019 ◽  
Vol 11 (12) ◽  
pp. 3336 ◽  
Author(s):  
Hyunwoo Hwangbo ◽  
Yangsok Kim

Many companies operate e-commerce websites to sell fashion products. Some customers want to buy products with intention of sustainability and therefore the companies need to suggest appropriate fashion products to those customers. Recommender systems are key applications in these sustainable digital marketing strategies and high performance is the most necessary factor. This research aims to improve recommendation systems’ performance by considering item session and attribute session information. We suggest the Item Session-Based Recommender (ISBR) and the Attribute Session-Based Recommenders (ASBRs) that use item and attribute session data independently, and then we suggest the Feature-Weighted Session-Based Recommenders (FWSBRs) that combine multiple ASBRs with various feature weighting schemes. Our experimental results show that FWSBR with chi-square feature weighting scheme outperforms ISBR, ASBRs, and Collaborative Filtering Recommender (CFR). In addition, it is notable that FWSBRs overcome the cold-start item problem, one significant limitation of CFR and ISBR, without losing performance.


Sign in / Sign up

Export Citation Format

Share Document