Numerical Study of Soil Water Content to Estimate the Hydraulic Properties of Soil in Tunisia

Author(s):  
Asma Jedidi ◽  
Sana Dardouri ◽  
Jalila Sghaier
Biologia ◽  
2007 ◽  
Vol 62 (5) ◽  
Author(s):  
Horst Gerke ◽  
Rolf Kuchenbuch

AbstractPlants can affect soil moisture and the soil hydraulic properties both directly by root water uptake and indirectly by modifying the soil structure. Furthermore, water in plant roots is mostly neglected when studying soil hydraulic properties. In this contribution, we analyze effects of the moisture content inside roots as compared to bulk soil moisture contents and speculate on implications of non-capillary-bound root water for determination of soil moisture and calibration of soil hydraulic properties.In a field crop of maize (Zea mays) of 75 cm row spacing, we sampled the total soil volumes of 0.7 m × 0.4 m and 0.3 m deep plots at the time of tasseling. For each of the 84 soil cubes of 10 cm edge length, root mass and length as well as moisture content and soil bulk density were determined. Roots were separated in 3 size classes for which a mean root porosity of 0.82 was obtained from the relation between root dry mass density and root bulk density using pycnometers. The spatially distributed fractions of root water contents were compared with those of the water in capillary pores of the soil matrix.Water inside roots was mostly below 2–5% of total soil water content; however, locally near the plant rows it was up to 20%. The results suggest that soil moisture in roots should be separately considered. Upon drying, the relation between the soil and root water may change towards water remaining in roots. Relations depend especially on soil water retention properties, growth stages, and root distributions. Gravimetric soil water content measurement could be misleading and TDR probes providing an integrated signal are difficult to interpret. Root effects should be more intensively studied for improved field soil water balance calculations.


2017 ◽  
Vol 52 (7) ◽  
pp. 539-547 ◽  
Author(s):  
Gustavo Soares de Souza ◽  
Danielle Inácio Alves ◽  
Maurício Lima Dan ◽  
Julião Soares de Souza Lima ◽  
Abner Luiz Castelão Campos da Fonseca ◽  
...  

Abstract: The objective of this work was to evaluate the cultivation effects of organic conilon coffee (Coffea canephora) intercropped with tree and fruit species on soil physico-hydraulic properties. Conilon coffee managements in the organic system were: T1, full-sun monoculture; T2, T3, T4, and T5, intercropping with peach palm (Bactris gasipae), gliricidia (Gliricidia sepium), banana (Musa sp.), and inga (Inga edulis), respectively; and T6, an area of secondary native forest used as a control. The evaluated soil physico-hydraulic properties were: bulk density, porosity, plant-available water capacity, soil-penetration resistance, soil-water content, soil temperature, and least limiting water range. Conilon coffee intercropped with peach palm and gliricidia resulted in lower soil bulk density and penetration resistance, and in higher total porosity, microporosity, and soil-water content. Organic coffee shaded with peach palm and gliricidia improve the soil physico-hydraulic quality, in comparison with the soil under monoculture in full sun and with the soil of secondary native forest.


2006 ◽  
Vol 409 (1) ◽  
pp. 117-119 ◽  
Author(s):  
G. N. Fedotov ◽  
Yu. D. Tret’yakov ◽  
E. I. Pakhomov ◽  
A. I. Kuklin ◽  
A. Kh. Islamov ◽  
...  

2015 ◽  
Vol 744-746 ◽  
pp. 551-554
Author(s):  
Wen Qing Wu ◽  
Jiang Hu Chen ◽  
Hong Yu Zhang ◽  
Jun Hua Wu

In view of the holes appearing in different areas of geo-membrane when the geo-membrane technology is applied to the unsaturated expansive soil canal slope, the VADOSE/W is used to analyze the pore-water pressure of the internal canal slope by changing the falling water level. The results show that the hole is nearer to the toe of slope, its effect on the whole seepage field is greater. The greater the rate is, the soil water content is greater.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 904
Author(s):  
Duan Li ◽  
Jianhua Si ◽  
Xiaoyou Zhang ◽  
Yayu Gao ◽  
Huan Luo ◽  
...  

Stable hydraulic conductivity in forest trees maintains the survival of trees which contribute to productivity in forest ecosystems. Drought conditions break down this relationship, but the mechanisms are poorly known. To increase the understanding of the mechanism of hydraulic characteristics during drought, we determined hydraulic parameters in Populus euphratica Oliv. (P. euphratica) in a time-series of drought using a high-pressure flow meter. We found that P. euphratica could enhance hydraulic transport in severe drought stress under a threshold of soil water content. Drought-induced loss of hydraulic conductance could seriously impair water transport capacity. The soil water content of about 4.5% in the rhizosphere could lead to canopy mortality yet maintain live roots. Hydraulic conductance could be changed under drought stress as a consequence of changes in the anatomical structure and physiology. Furthermore, there was also a trade-off between hydraulic efficiency and safety. The consideration of hydraulic efficiency was first within the range of hydraulic safety limit. Once the hydraulic safety limit was reached, safety would be taken as the first consideration and hydraulic efficiency would be reduced. Research on the mechanism of hydraulic properties in riparian plants in arid areas provides a scientific basis for riparian forest restoration.


Sign in / Sign up

Export Citation Format

Share Document