Raptors as Seed Dispersers

Birds of Prey ◽  
2018 ◽  
pp. 139-158
Author(s):  
Néstor Pérez-Méndez ◽  
Airam Rodríguez
Keyword(s):  
2020 ◽  
Vol 287 (1939) ◽  
pp. 20202127
Author(s):  
S. Hervías-Parejo ◽  
C. Tur ◽  
R. Heleno ◽  
M. Nogales ◽  
S. Timóteo ◽  
...  

Many vertebrate species act as both plant pollinators and seed-dispersers, thus interconnecting these processes, particularly on islands. Ecological multilayer networks are a powerful tool to explore interdependencies between processes; however, quantifying the links between species engaging in different types of interactions (i.e. inter-layer edges) remains a great challenge. Here, we empirically measured inter-layer edge weights by quantifying the role of individually marked birds as both pollinators and seed-dispersers of Galápagos plant species over an entire year. Although most species (80%) engaged in both functions, we show that only a small proportion of individuals actually linked the two processes, highlighting the need to further consider intra-specific variability in individuals' functional roles. Furthermore, we found a high variation among species in linking both processes, i.e. some species contribute more than others to the modular organization of the multilayer network. Small and abundant species are particularly important for the cohesion of pollinator seed-dispersal networks, demonstrating the interplay between species traits and neutral processes structuring natural communities.


2015 ◽  
Vol 96 (4) ◽  
pp. 644-646
Author(s):  
Kim R. McConkey ◽  
Warren Y. Brockelman ◽  
Chanpen Saralamba ◽  
Anuttara Nathalang
Keyword(s):  

2004 ◽  
Vol 19 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Stephen B. Vander Wall ◽  
William S. Longland
Keyword(s):  

Oecologia ◽  
2014 ◽  
Vol 176 (3) ◽  
pp. 837-848 ◽  
Author(s):  
Francisco Saavedra ◽  
Isabell Hensen ◽  
Stephan G. Beck ◽  
Katrin Böhning-Gaese ◽  
Denis Lippok ◽  
...  

2021 ◽  
Vol 376 (1821) ◽  
pp. 20190760 ◽  
Author(s):  
František Baluška ◽  
Stefano Mancuso

Vascular plants are integrated into coherent bodies via plant-specific synaptic adhesion domains, action potentials (APs) and other means of long-distance signalling running throughout the plant bodies. Plant-specific synapses and APs are proposed to allow plants to generate their self identities having unique ways of sensing and acting as agents with their own goals guiding their future activities. Plants move their organs with a purpose and with obvious awareness of their surroundings and require APs to perform and control these movements. Self-identities allow vascular plants to act as individuals enjoying sociality via their self/non-self-recognition and kin recognition. Flowering plants emerge as cognitive and intelligent organisms when the major strategy is to attract and control their animal pollinators as well as seed dispersers by providing them with food enriched with nutritive and manipulative/addictive compounds. Their goal in interactions with animals is manipulation for reproduction, dispersal and defence. This article is part of the theme issue ‘Basal cognition: multicellularity, neurons and the cognitive lens’.


2002 ◽  
Vol 62 (2) ◽  
pp. 339-346 ◽  
Author(s):  
J. RAGUSA-NETTO

Figs are a remarkable food resource to frugivores, mainly in periods of general fruit scarcity. Ficus calyptroceras Miq. (Moraceae) is the only fig species in a type of dry forest in western Brazil. In this study I examined the fruiting pattern as well as fig consumption by birds in F. calyptroceras. Although rainfall was highly seasonal, fruiting was aseasonal, since the monthly proportion of fruiting trees ranged from 4% to 14% (N = 50 trees). I recorded 22 bird species feeding on figs. In the wet season 20 bird species ate figs, while in the dry season 13 did. Parrots were the most important consumers. This group removed 72% and 40% of the figs consumed in the wet and dry seasons, respectively. No bird species increases fig consumption from dry to wet season. However, a group of bird species assumed as seed dispersers largely increases fig consumption from wet to dry season, suggesting the importance of this resource in the period of fruit scarcity. The results of this study points out the remarkable role that F. calyptroceras plays to frugivorous birds, in such a dry forest, since its fruits were widely consumed and were available all year round.


2011 ◽  
Vol 11 (4) ◽  
pp. 373-376 ◽  
Author(s):  
Raul Costa-Pereira ◽  
Francisco Severo-Neto ◽  
Tamires Soares Yule ◽  
Ana Paula Tinti Pereira

The role of fish as frugivorous and its ecological consequences are often neglected in ecological studies. However, the importance of the interaction between fish and plants is gaining force in scientific literature, and fish has been considered effective seed dispersers. The fruit-eating fish assemblage of Banara arguta (Salicaceae) was evaluated in Southern Pantanal wetlands. Nine species were reported consuming fruits, with different strategies to capture them. The distribution of B. arguta associated with the Pantanal floodplain and the presence of several species of fruit-eating fish, suggest that ichthyochory can be an important seed dispersal strategy to B. arguta.


2015 ◽  
Author(s):  
R. Carlos Almazán-Núñez ◽  
Luis E. Eguiarte ◽  
María del Coro Arizmendi ◽  
Pablo Corcuera

We evaluated the seed dispersal of Bursera longipes by birds along a successional gradient of tropical dry forest (TDF) in southwestern Mexico. B. longipes is an endemic tree to the TDF in the Balsas basin. The relative abundance of frugivorous birds, their frequency of visits to B. longipes and the number of removed fruits were recorded at three study sites with different stages of forest succession (early, intermediate and mature) characterized by distinct floristic and structural elements. Flycatchers of the Myiarchus and Tyrannus genera removed the majority of fruits at each site. Overall, visits to B. longipes were less frequent at the early successional site. Birds that function as legitimate dispersers by consuming whole seeds and regurgitating or defecating intact seeds in the process also remove the pseudoaril from seeds, thereby facilitating the germination process. The highest germination percentages were recorded for seeds that passed through the digestive tract of two migratory flycatchers: M. cinerascens and M. nutingii. Perch plants, mainly composed of legumes (e.g., Eysenhardtia polystachya, Acacia cochliacantha, Calliandra eryophylla, Mimosa polyantha), serve also as nurse plants since the number of young individuals recruited from B. longipes was higher under these than expected by chance. This study shows that Myiarchus flycatchers are the most efficient seed dispersers of B. longipes across all successional stages. This suggests a close mutualistic relationship derived from adaptive processes and local specializations throughout the distribution of both taxa, as supported by the geographic mosaic theory of coevolution.


Sign in / Sign up

Export Citation Format

Share Document