Methods for Clustering Categorical and Mixed Data: An Overview and New Algorithms

Author(s):  
Sadaaki Miyamoto ◽  
Van-Nam Huynh ◽  
Shuhei Fujiwara
Keyword(s):  
2018 ◽  
Author(s):  
Andrew Dalke ◽  
Jerome Hert ◽  
Christian Kramer

We present mmpdb, an open source Matched Molecular Pair (MMP) platform to create, compile, store, retrieve, and use MMP rules. mmpdb is suitable for the large datasets typically found in pharmaceutical and agrochemical companies and provides new algorithms for fragment canonicalization and stereochemistry handling. The platform is written in Python and based on the RDKit toolkit. mmpdb is freely available.


2018 ◽  
Vol 9 (12) ◽  
pp. 1847-1850
Author(s):  
LathaV LathaV ◽  
P Rajalakshmi
Keyword(s):  

2012 ◽  
Vol 35 (4) ◽  
pp. 802-810
Author(s):  
Fan YANG ◽  
Jian WANG ◽  
Ya-Nan LIU ◽  
Rui CAO
Keyword(s):  

2008 ◽  
Author(s):  
Michelle T. Armesto ◽  
Ruben Hernandez-Murillo ◽  
Michael Owyang ◽  
Jeremy M. Piger

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jimena Olveres ◽  
Erik Carbajal-Degante ◽  
Boris Escalante-Ramírez ◽  
Enrique Vallejo ◽  
Carla María García-Moreno

Segmentation tasks in medical imaging represent an exhaustive challenge for scientists since the image acquisition nature yields issues that hamper the correct reconstruction and visualization processes. Depending on the specific image modality, we have to consider limitations such as the presence of noise, vanished edges, or high intensity differences, known, in most cases, as inhomogeneities. New algorithms in segmentation are required to provide a better performance. This paper presents a new unified approach to improve traditional segmentation methods as Active Shape Models and Chan-Vese model based on level set. The approach introduces a combination of local analysis implementations with classic segmentation algorithms that incorporates local texture information given by the Hermite transform and Local Binary Patterns. The mixture of both region-based methods and local descriptors highlights relevant regions by considering extra information which is helpful to delimit structures. We performed segmentation experiments on 2D images including midbrain in Magnetic Resonance Imaging and heart’s left ventricle endocardium in Computed Tomography. Quantitative evaluation was obtained with Dice coefficient and Hausdorff distance measures. Results display a substantial advantage over the original methods when we include our characterization schemes. We propose further research validation on different organ structures with promising results.


2021 ◽  
Vol 13 (2) ◽  
pp. 268
Author(s):  
Xiaochen Lv ◽  
Wenhong Wang ◽  
Hongfu Liu

Hyperspectral unmixing is an important technique for analyzing remote sensing images which aims to obtain a collection of endmembers and their corresponding abundances. In recent years, non-negative matrix factorization (NMF) has received extensive attention due to its good adaptability for mixed data with different degrees. The majority of existing NMF-based unmixing methods are developed by incorporating additional constraints into the standard NMF based on the spectral and spatial information of hyperspectral images. However, they neglect to exploit the nature of imbalanced pixels included in the data, which may cause the pixels mixed with imbalanced endmembers to be ignored, and thus the imbalanced endmembers generally cannot be accurately estimated due to the statistical property of NMF. To exploit the information of imbalanced samples in hyperspectral data during the unmixing procedure, in this paper, a cluster-wise weighted NMF (CW-NMF) method for the unmixing of hyperspectral images with imbalanced data is proposed. Specifically, based on the result of clustering conducted on the hyperspectral image, we construct a weight matrix and introduce it into the model of standard NMF. The proposed weight matrix can provide an appropriate weight value to the reconstruction error between each original pixel and the reconstructed pixel in the unmixing procedure. In this way, the adverse effect of imbalanced samples on the statistical accuracy of NMF is expected to be reduced by assigning larger weight values to the pixels concerning imbalanced endmembers and giving smaller weight values to the pixels mixed by majority endmembers. Besides, we extend the proposed CW-NMF by introducing the sparsity constraints of abundance and graph-based regularization, respectively. The experimental results on both synthetic and real hyperspectral data have been reported, and the effectiveness of our proposed methods has been demonstrated by comparing them with several state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document