A Redefinition of Seismic Input for Design and Assessment

Author(s):  
G. Michele Calvi ◽  
Daniela Rodrigues ◽  
Vitor Silva
Keyword(s):  
2002 ◽  
pp. 2389-2406
Author(s):  
G. F. Panza ◽  
F. Vaccari ◽  
F. Romanelli

1990 ◽  
Vol 30 (2) ◽  
pp. 114-118 ◽  
Author(s):  
M.O. Al-Hunaidi ◽  
Ikuo Towhata ◽  
Kenji Ishihara
Keyword(s):  

2018 ◽  
Vol 2 (5) ◽  
pp. 238 ◽  
Author(s):  
Davide Forcellini ◽  
Marco Tanganelli ◽  
Stefania Viti

The seismic excitation at the surface can be determined through Site Response Analyses (SRA) as to account for the specific soil properties of the site. However, the obtained results are largely affected by the model choice and setting, and by the depth of the considered soil layer. This paper proposes a refined 3D analytical approach, by the application of OPENSEES platform. A preliminary analysis has been performed to check the model adequacy as regards the mesh geometry and the boundary conditions. After the model setting, a SRA has been performed on various soil profiles, differing for the shear velocity and representing the different soil classes as proposed by the Eurocode 8 (EC8). Three levels of seismic hazard have been considered. The seismic input at the bedrock has been represented consequently, through as much ensembles of seven ground motions each, spectrum-compatible to the elastic spectra provided by EC8 for the soil-type A (bedrock). Special attention has been paid to the role of the considered soil depth on the evaluation of the surface seismic input. Different values of depth have been considered for each soil type and seismic intensity, in order to check its effect on the obtained results.


Author(s):  
Francesca Mancini ◽  
Sebastiano D’Amico ◽  
Giovanna Vessia

ABSTRACT Local seismic response (LSR) studies are considerably conditioned by the seismic input features due to the nonlinear soil behavior under dynamic loading and the subsurface site conditions (e.g., mechanical properties of soils and rocks and geological setting). The selection of the most suitable seismic input is a key point in LSR. Unfortunately, few recordings data are available at seismic stations in near-field areas. Then, synthetic accelerograms can be helpful in LSR analysis in urbanized near-field territories. Synthetic accelerograms are generated by simulation procedures that consider adequately supported hypotheses about the source mechanism at the seismotectonic region and the wave propagation path toward the surface. Hereafter, mainshocks recorded accelerograms at near-field seismic stations during the 2016–2017 Central Italy seismic sequence have been compared with synthetic accelerograms calculated by an extended finite-fault ground-motion simulation algorithm code. The outcomes show that synthetic seismograms can reproduce the high-frequency content of seismic waves at near-field areas. Then, in urbanized near-field areas, synthetic accelerograms can be fruitfully used in microzonation studies.


2022 ◽  
pp. 239-253
Author(s):  
Mohamed N. Elgabry ◽  
Hany M. Hassan ◽  
Hesham Hussein
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document