Motor Bearing Fault Diagnosis Using Deep Convolutional Neural Networks with 2D Analysis of Vibration Signal

Author(s):  
M. M. Manjurul Islam ◽  
Jong-Myon Kim
2020 ◽  
Vol 33 (2) ◽  
pp. 439-447 ◽  
Author(s):  
Jiangquan ZHANG ◽  
Yi SUN ◽  
Liang GUO ◽  
Hongli GAO ◽  
Xin HONG ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2750 ◽  
Author(s):  
Guoqiang Li ◽  
Chao Deng ◽  
Jun Wu ◽  
Xuebing Xu ◽  
Xinyu Shao ◽  
...  

Accurate and timely bearing fault diagnosis is crucial to decrease the probability of unexpected failures of rotating machinery and improve the efficiency of its scheduled maintenance. Since convolutional neural networks (CNN) have poor feature extraction capability for sensor data with 1D format, CNN combined with signal processing algorithm is often adopted for fault diagnosis. This increases manual conversion work and expertise dependence while reducing the feasibility and robustness of the corresponding fault diagnosis method. In this paper, a novel sensor data-driven fault diagnosis method is proposed by fusing S-transform (ST) algorithm and CNN, namely ST-CNN. First of all, a ST layer is designed based on S-transform algorithm. In the ST layer, sensor data is automatically converted into 2D time-frequency matrix without manual conversion work. Then, a new ST-CNN model is constructed, and the time-frequency coefficient matrixes are inputted into the constructed ST-CNN model. After the training process of the ST-CNN model is completed, the classification layer such as softmax performs the fault diagnosis. Finally, the diagnosis performance of the proposed method is evaluated by using two public available datasets of bearings. The experimental results show that the proposed method performs the higher and more robust diagnosis performance than other existing methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yanwei Xu ◽  
Chen Li ◽  
Tancheng Xie

Aiming at the problem that the complex working conditions affect the effect of manual feature extraction in bearing fault diagnosis of metro traction motor, a fault diagnosis method of metro traction motor bearing based on improved stacked denoising autoencoder (SDAE) is proposed. This method extracts fault features directly from the original vibration signal through deep learning, reduces the dependence on signal processing technology and diagnosis experience, and solves the problem of unsatisfactory effect of extracting feature values under complex working conditions. The effect of the improved SDAE network structure on the accuracy of bearing fault diagnosis is studied through experiments, and the best network parameters are selected. The test results show that the proposed method can well extract the deep features of the fault under the condition of variable speed and variable load; when using data sets with complex working conditions, the classification accuracy of the proposed method is better than that of many traditional fault diagnosis methods.


Sign in / Sign up

Export Citation Format

Share Document