Electrochemical Synthesis of Battery Electrode Materials from Ionic Liquids

Author(s):  
Abhishek Lahiri ◽  
Natalia Borisenko ◽  
Frank Endres
2007 ◽  
Vol 52 (22) ◽  
pp. 6346-6352 ◽  
Author(s):  
Yadong Wang ◽  
K. Zaghib ◽  
A. Guerfi ◽  
Fernanda F.C. Bazito ◽  
Roberto M. Torresi ◽  
...  

2002 ◽  
Vol 47 (19) ◽  
pp. 3137-3149 ◽  
Author(s):  
M. Morcrette ◽  
Y. Chabre ◽  
G. Vaughan ◽  
G. Amatucci ◽  
J.-B. Leriche ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2325
Author(s):  
Ronan Invernizzi ◽  
Liliane Guerlou-Demourgues ◽  
François Weill ◽  
Alexia Lemoine ◽  
Marie-Anne Dourges ◽  
...  

Nanostructuration is one of the most promising strategies to develop performant electrode materials for energy storage devices, such as hybrid supercapacitors. In this work, we studied the influence of precipitation medium and the use of a series of 1-alkyl-3-methylimidazolium bromide ionic liquids for the nanostructuration of β(III) cobalt oxyhydroxides. Then, the effect of the nanostructuration and the impact of the different ionic liquids used during synthesis were investigated in terms of energy storage performances. First, we demonstrated that forward precipitation, in a cobalt-rich medium, leads to smaller particles with higher specific surface areas (SSA) and an enhanced mesoporosity. Introduction of ionic liquids (ILs) in the precipitation medium further strongly increased the specific surface area and the mesoporosity to achieve well-nanostructured materials with a very high SSA of 265 m2/g and porosity of 0.43 cm3/g. Additionally, we showed that ILs used as surfactant and template also functionalize the nanomaterial surface, leading to a beneficial synergy between the highly ionic conductive IL and the cobalt oxyhydroxide, which lowers the resistance charge transfer and improves the specific capacity. The nature of the ionic liquid had an important influence on the final electrochemical properties and the best performances were reached with the ionic liquid containing the longest alkyl chain.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 664
Author(s):  
Shuai Tan ◽  
Theodore John Kraus ◽  
Mitchell Ross Helling ◽  
Rudolph Kurtzer Mignon ◽  
Franco Basile ◽  
...  

Coal-derived carbon nanofibers (CCNFs) have been recently found to be a promising and low-cost electrode material for high-performance supercapacitors. However, the knowledge gap still exists between holistic understanding of coal precursors derived from different solvents and resulting CCNFs’ properties, prohibiting further optimization of their electrochemical performance. In this paper, assisted by laser desorption/ionization (LDI) and gas chromatography–mass spectrometry (GC–MS) technologies, a systematic study was performed to holistically characterize mass distribution and chemical composition of coal precursors derived from various ionic liquids (ILs) as extractants. Sequentially, X-ray photoelectron spectroscopy (XPS) revealed that the differences in chemical properties of various coal products significantly affected the surface oxygen concentrations and certain species distributions on the CCNFs, which, in turn, determined the electrochemical performances of CCNFs as electrode materials. We report that the CCNF that was produced by an oxygen-rich coal fragment from C6mimCl ionic liquid extraction showed the highest concentrations of quinone and ester groups on the surface. Consequentially, C6mimCl-CCNF achieved the highest specific capacitance and lowest ion diffusion resistance. Finally, a symmetric carbon/carbon supercapacitor fabricated with such CCNF as electrode delivered an energy density of 21.1 Wh/kg at the power density of 0.6 kW/kg, which is comparable to commercial active carbon supercapacitors.


2016 ◽  
Vol 9 (3) ◽  
pp. 955-961 ◽  
Author(s):  
Jeongsik Yun ◽  
Jonas Pfisterer ◽  
Aliaksandr S. Bandarenka

This work reveals a three-stage mechanism of Na intercalation into one of the state-of-the-art battery electrode materials operating in aqueous electrolytes.


Author(s):  
Daniel J. Lyons ◽  
Jamie L. Weaver ◽  
Anne C. Co

Li distribution within micron-scale battery electrode materials is quantified with neutron depth profiling (NDP). This method allows the determination of intra- and inter-electrode parameters such as lithiation efficiency, electrode morphology...


Sign in / Sign up

Export Citation Format

Share Document