Quantum Authentication Scheme Based on Fingerprint-Encoded Graph States

Author(s):  
Fei Li ◽  
Ying Guo ◽  
Jiankun Hu
2004 ◽  
Vol 15 (04) ◽  
pp. 609-617 ◽  
Author(s):  
XIAOYU LI ◽  
HOWARD BARNUM

A quantum authentication scheme is presented in this paper. Two parties share Einstein-Podolsky-Rosen(EPR) pairs previously as the identification token. They create auxiliary EPR pairs to interact with the identification token. Then the authentication is accomplished by a complete Bell state measurement. This scheme is proved to be secure. If no errors and eavesdroppers exist in the transmission, the identification token is unchanged after the authentication. So it can be reused.


2003 ◽  
Vol 3 (6) ◽  
pp. 581-602
Author(s):  
D. Gottesman

Quantum states cannot be cloned. I show how to extend this property to classical messages encoded using quantum states, a task I call ``uncloneable encryption.'' An uncloneable encryption scheme has the property that an eavesdropper Eve not only cannot read the encrypted message, but she cannot copy it down for later decoding. She could steal it, but then the receiver Bob would not receive the message, and would thus be alerted that something was amiss. I prove that any authentication scheme for quantum states acts as a secure uncloneable encryption scheme. Uncloneable encryption is also closely related to quantum key distribution (QKD), demonstrating a close connection between cryptographic tasks for quantum states and for classical messages. Thus, studying uncloneable encryption and quantum authentication allows for some modest improvements in QKD protocols. While the main results apply to a one-time key with unconditional security, I also show uncloneable encryption remains secure with a pseudorandom key. In this case, to defeat the scheme, Eve must break the computational assumption behind the pseudorandom sequence before Bob receives the message, or her opportunity is lost. This means uncloneable encryption can be used in a non-interactive setting, where QKD is not available, allowing Alice and Bob to convert a temporary computational assumption into a permanently secure message.


2017 ◽  
Vol 31 (09) ◽  
pp. 1750067 ◽  
Author(s):  
Longxia Liao ◽  
Xiaoqi Peng ◽  
Jinjing Shi ◽  
Ying Guo

Inspired by the special properties of the graph state, a quantum authentication scheme is proposed in this paper, which is implemented with the utilization of the graph state. Two entities, a reliable party, Trent, as a verifier and Alice as prover are included. Trent is responsible for registering Alice in the beginning and confirming Alice in the end. The proposed scheme is simple in structure and convenient to realize in the realistic physical system due to the use of the graph state in a one-way quantum channel. In addition, the security of the scheme is extensively analyzed and accordingly can resist the general individual attack strategies.


Sign in / Sign up

Export Citation Format

Share Document