scholarly journals The Derived Category of Coherent Sheaves and B-model Topological String Theory

Author(s):  
Stephen Pietromonaco
Author(s):  
Ivan Kostov

This article discusses the link between matrix models and string theory, giving emphasis on topological string theory and the Dijkgraaf–Vafa correspondence, along with applications of this correspondence and its generalizations to supersymmetric gauge theory, enumerative geometry, and mirror symmetry. The article first provides an overview of strings and matrices, noting that the correspondence between matrix models and string theory makes it possible to solve both non-critical strings and topological strings. It then describes some basic aspects of topological strings on Calabi-Yau manifolds and states the Dijkgraaf–Vafa correspondence, focusing on how it is connected to string dualities and how it can be used to compute superpotentials in certain supersymmetric gauge theories. In addition, it shows how the correspondence extends to toric manifolds and leads to a matrix model approach to enumerative geometry. Finally, it reviews matrix quantum mechanics and its applications in superstring theory.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Yikun Jiang ◽  
Manki Kim ◽  
Gabriel Wong

Abstract This is the second in a two-part paper devoted to studying entanglement entropy and edge modes in the A model topological string theory. This theory enjoys a gauge-string (Gopakumar-Vafa) duality which is a topological analogue of AdS/CFT. In part 1, we defined a notion of generalized entropy for the topological closed string theory on the resolved conifold. We provided a canonical interpretation of the generalized entropy in terms of the q-deformed entanglement entropy of the Hartle-Hawking state. We found string edge modes transforming under a quantum group symmetry and interpreted them as entanglement branes. In this work, we provide the dual Chern-Simons gauge theory description. Using Gopakumar-Vafa duality, we map the closed string theory Hartle-Hawking state to a Chern-Simons theory state containing a superposition of Wilson loops. These Wilson loops are dual to closed string worldsheets that determine the partition function of the resolved conifold. We show that the undeformed entanglement entropy due to cutting these Wilson loops reproduces the bulk generalized entropy and therefore captures the entanglement underlying the bulk spacetime. Finally, we show that under the Gopakumar-Vafa duality, the bulk entanglement branes are mapped to a configuration of topological D-branes, and the non-local entanglement boundary condition in the bulk is mapped to a local boundary condition in the gauge theory dual. This suggests that the geometric transition underlying the gauge-string duality may also be responsible for the emergence of entanglement branes.


Sign in / Sign up

Export Citation Format

Share Document