topological strings
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 13)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Vol 104 (10) ◽  
Author(s):  
Shi Cheng ◽  
Piotr Sułkowski
Keyword(s):  

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
M.Y. Avetisyan ◽  
R.L. Mkrtchyan

Abstract We present a new expression for the partition function of the refined Chern-Simons theory on S3 with an arbitrary gauge group, which is explicitly equal to 1 when the coupling constant is zero. Using this form of the partition function we show that the previously known Krefl-Schwarz representation of the partition function of the refined Chern-Simons theory on S3 can be generalized to all simply laced algebras.For all non-simply laced gauge algebras, we derive similar representations of that partition function, which makes it possible to transform it into a product of multiple sine functions aiming at the further establishment of duality with the refined topological strings.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Vivek Kumar Singh ◽  
Rama Mishra ◽  
P. Ramadevi

Abstract Weaving knots W(p, n) of type (p, n) denote an infinite family of hyperbolic knots which have not been addressed by the knot theorists as yet. Unlike the well known (p, n) torus knots, we do not have a closed-form expression for HOMFLY-PT and the colored HOMFLY-PT for W(p, n). In this paper, we confine to a hybrid generalization of W(3, n) which we denote as $$ {\hat{W}}_3 $$ W ̂ 3 (m, n) and obtain closed form expression for HOMFLY-PT using the Reshitikhin and Turaev method involving $$ \mathrm{\mathcal{R}} $$ ℛ -matrices. Further, we also compute [r]-colored HOMFLY-PT for W(3, n). Surprisingly, we observe that trace of the product of two dimensional $$ \hat{\mathrm{\mathcal{R}}} $$ ℛ ̂ -matrices can be written in terms of infinite family of Laurent polynomials $$ {\mathcal{V}}_{n,t}\left[q\right] $$ V n , t q whose absolute coefficients has interesting relation to the Fibonacci numbers $$ {\mathrm{\mathcal{F}}}_n $$ ℱ n . We also computed reformulated invariants and the BPS integers in the context of topological strings. From our analysis, we propose that certain refined BPS integers for weaving knot W(3, n) can be explicitly derived from the coefficients of Chebyshev polynomials of first kind.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jean-Emile Bourgine

Abstract In [1], Nakatsu and Takasaki have shown that the melting crystal model behind the topological strings vertex provides a tau-function of the KP hierarchy after an appropriate time deformation. We revisit their derivation with a focus on the underlying quantum W1+∞ symmetry. Specifically, we point out the role played by automorphisms and the connection with the intertwiner — or vertex operator — of the algebra. This algebraic perspective allows us to extend part of their derivation to the refined melting crystal model, lifting the algebra to the quantum toroidal algebra of $$ \mathfrak{gl} $$ gl (1) (also called Ding-Iohara-Miki algebra). In this way, we take a first step toward the definition of deformed hierarchies associated to A-model refined topological strings.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
M. Nouman Muteeb

AbstractWe propose expressions for refined open topological string partition function on certain non-compact Calabi Yau 3-folds with topological branes wrapped on the special lagrangian submanifolds. The corresponding web diagrams are partially compact and a lagrangian brane is inserted on one of the external legs. Partial compactification introduces a mass deformation in the corresponding gauge theory. We propose conjectures that equate these open topological string partition functions with the generating function of equivaraint indices on certain quiver moduli spaces. To obtain these conjectures we use the identification of topological string partition functions with equivariant indices on the instanton moduli spaces.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Min-xin Huang ◽  
Sheldon Katz ◽  
Albrecht Klemm

Abstract We make a proposal for calculating refined Gopakumar-Vafa numbers (GVN) on elliptically fibered Calabi-Yau 3-folds based on refined holomorphic anomaly equations. The key examples are smooth elliptic fibrations over (almost) Fano surfaces. We include a detailed review of existing mathematical methods towards defining and calculating the (unrefined) Gopakumar-Vafa invariants (GVI) and the GVNs on compact Calabi-Yau 3-folds using moduli of stable sheaves, in a language that should be accessible to physicists. In particular, we discuss the dependence of the GVNs on the complex structure moduli and on the choice of an orientation. We calculate the GVNs in many instances and compare the B-model predictions with the geometric calculations. We also derive the modular anomaly equations from the holomorphic anomaly equations by analyzing the quasi-modular properties of the propagators. We speculate about the physical relevance of the mathematical choices that can be made for the orientation.


OSA Continuum ◽  
2020 ◽  
Author(s):  
Chun-Yan Lin ◽  
Giulia Marcucci ◽  
Gang Wang ◽  
You-Lin Chuang ◽  
Claudio Conti ◽  
...  

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Sanefumi Moriyama

Abstract Motivated by understanding M2-branes, we propose to reformulate partition functions of M2-branes by quantum curves. Especially, we focus on the backgrounds of del Pezzo geometries, which enjoy Weyl group symmetries of exceptional algebras. We construct quantum curves explicitly and turn to the analysis of classical phase space areas and quantum mirror maps. We find that the group structure helps in clarifying previous subtleties, such as the shift of the chemical potential in the area and the identification of the overall factor of the spectral operator in the mirror map. We list the multiplicities characterizing the quantum mirror maps and find that the decoupling relation known for the BPS indices works for the mirror maps. As a result, with the group structure we can present explicitly the statement for the correspondence between spectral theories and topological strings on del Pezzo geometries.


2020 ◽  
Vol 27 (02) ◽  
pp. 343-360 ◽  
Author(s):  
Hengyun Yang ◽  
Ying Xu ◽  
Jiancai Sun

The topological N = 2 superconformal algebra was introduced by Dijkgraaf, Verlinde and Verlinde as the symmetry algebra of topological strings at d < 1. We give a classification of irreducible 𝕫 × 𝕫-graded modules of the intermediate series over this infinite-dimensional Lie superalgebra.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Na Wang ◽  
Chuanzhong Li

AbstractIn this paper, we consider two different subjects: the algebra of universal characters $$S_{[\lambda ,\mu ]}(\mathbf{x},\mathbf{y})$$S[λ,μ](x,y) (a generalization of Schur functions) and the phase model of strongly correlated bosons. We find that the two-site generalized phase model can be realized in the algebra of universal characters, and the entries in the monodromy matrix of the phase model can be represented by the vertex operators $$\Gamma _i^\pm (z) (i=1,2)$$Γi±(z)(i=1,2) which generate universal characters. Meanwhile, we find that these vertex operators can also be used to obtain the A-model topological string partition function on $$\mathbb {C}^3$$C3.


Sign in / Sign up

Export Citation Format

Share Document