A Framework for a Dynamic Inter-connection of Collaborating Agents with Multi-layered Application Abstraction Based on a Software-Bus System

Author(s):  
Robert Brehm ◽  
Mareike Redder ◽  
Gordon Flaegel ◽  
Jendrik Menz ◽  
Cecil Bruce-Boye
Keyword(s):  
2019 ◽  
Vol 14 (1) ◽  
pp. 5-11
Author(s):  
S. Rajasekaran ◽  
S. Muralidharan

Background: Increasing power demand forces the power systems to operate at their maximum operating conditions. This leads the power system into voltage instability and causes voltage collapse. To avoid this problem, FACTS devices have been used in power systems to increase system stability with much reduced economical ratings. To achieve this, the FACTS devices must be placed in exact location. This paper presents Firefly Algorithm (FA) based optimization method to locate these devices of exact rating and least cost in the transmission system. Methods: Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC) are the FACTS devices used in the proposed methodology to enhance the voltage stability of power systems. Considering two objectives of enhancing the voltage stability of the transmission system and minimizing the cost of the FACTS devices, the optimal ratings and cost were identified for the devices under consideration using Firefly algorithm as an optimization tool. Also, a model study had been done with four different cases such as normal case, line outage case, generator outage case and overloading case (140%) for IEEE 14,30,57 and 118 bus systems. Results: The optimal locations to install SVC and TCSC in IEEE 14, 30, 57 and 118 bus systems were evaluated with minimal L-indices and cost using the proposed Firefly algorithm. From the results, it could be inferred that the cost of installing TCSC in IEEE bus system is slightly higher than SVC.For showing the superiority of Firefly algorithm, the results were compared with the already published research finding where this problem was solved using Genetic algorithm and Particle Swarm Optimization. It was revealed that the proposed firefly algorithm gives better optimum solution in minimizing the L-index values for IEEE 30 Bus system. Conclusion: The optimal placement, rating and cost of installation of TCSC and SVC in standard IEEE bus systems which enhanced the voltage stability were evaluated in this work. The need of the FACTS devices was also tested during the abnormal cases such as line outage case, generator outage case and overloading case (140%) with the proposed Firefly algorithm. Outputs reveal that the recognized placement of SVC and TCSC reduces the probability of voltage collapse and cost of the devices in the transmission lines. The capability of Firefly algorithm was also ensured by comparing its results with the results of other algorithms.


Author(s):  
Hu Zhao ◽  
Shumin Feng ◽  
Yusheng Ci

Sudden passenger demand at a bus stop can lead to numerous passengers gathering at the stop, which can affect bus system operation. Bus system operators often deal with this problem by adopting peer-to-peer service, where empty buses are added to the fleet and dispatched directly to the stop where passengers are gathered (PG-stop). However, with this strategy, passengers at the PG-stop have a long waiting time to board a bus. Thus, this paper proposes a novel mathematical programming model to reduce the passenger waiting time at a bus stop. A more complete stop-skipping model that including four cases for passengers’ waiting time at bus stops is proposed in this study. The stop-skipping decision and fleet size are modeled as a dynamic program to obtain the optimal strategy that minimizes the passenger waiting time, and the optimization model is solved with an improved ant colony algorithm. The proposed strategy was implemented on a bus line in Harbin, China. The results show that, during the evacuation, using the stop-skipping strategy not only reduced the total waiting time for passengers but also decreased the proportion of passengers with a long waiting time (>6 min) at the stops. Compared with the habitual and peer-to-peer service strategies, the total waiting time for passengers is reduced by 31% and 23%, respectively. Additionally, the proportion of passengers with longer waiting time dropped to 43.19% by adopting the stop-skipping strategy, compared with 72.68% with the habitual strategy and 47.5% with the peer-to-peer service strategy.


2020 ◽  
Vol 13 (1) ◽  
pp. 158
Author(s):  
Sishen Wang ◽  
Hao Wang ◽  
Pengyu Xie ◽  
Xiaodan Chen

Low-carbon transport system is desired for sustainable cities. The study aims to compare carbon footprint of two transportation modes in campus transit, bus and bike-share systems, using life-cycle assessment (LCA). A case study was conducted for the four-campus (College Ave, Cook/Douglass, Busch, Livingston) transit system at Rutgers University (New Brunswick, NJ). The life-cycle of two systems were disaggregated into four stages, namely, raw material acquisition and manufacture, transportation, operation and maintenance, and end-of-life. Three uncertain factors—fossil fuel type, number of bikes provided, and bus ridership—were set as variables for sensitivity analysis. Normalization method was used in two impact categories to analyze and compare environmental impacts. The results show that the majority of CO2 emission and energy consumption comes from the raw material stage (extraction and upstream production) of the bike-share system and the operation stage of the campus bus system. The CO2 emission and energy consumption of the current campus bus system are 46 and 13 times of that of the proposed bike-share system, respectively. Three uncertain factors can influence the results: (1) biodiesel can significantly reduce CO2 emission and energy consumption of the current campus bus system; (2) the increased number of bikes increases CO2 emission of the bike-share system; (3) the increase of bus ridership may result in similar impact between two systems. Finally, an alternative hybrid transit system is proposed that uses campus buses to connect four campuses and creates a bike-share system to satisfy travel demands within each campus. The hybrid system reaches the most environmentally friendly state when 70% passenger-miles provided by campus bus and 30% by bike-share system. Further research is needed to consider the uncertainty of biking behavior and travel choice in LCA. Applicable recommendations include increasing ridership of campus buses and building a bike-share in campus to support the current campus bus system. Other strategies such as increasing parking fees and improving biking environment can also be implemented to reduce automobile usage and encourage biking behavior.


Author(s):  
W. H. Newman ◽  
N.W. van Vonno ◽  
A. Robinson ◽  
L. G. Pearce ◽  
E. J. Thomson
Keyword(s):  

Author(s):  
A.L. Gattozzi ◽  
S.M. Strank ◽  
S.P. Pish ◽  
J.D. Herbst ◽  
R.E. Hebner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document