Selection Optimization of Bloom Filter-Based Index Services in Ubiquitous Embedded Systems

Author(s):  
Zhu Wang ◽  
Chenxi Luo ◽  
Tiejian Luo
2012 ◽  
Vol 1 (5) ◽  
pp. 115-117
Author(s):  
Jahnavi KRM Jahnavi KRM ◽  
◽  
Raghavendra Rao K ◽  
Padma Suvarna R

2019 ◽  
Vol 139 (7) ◽  
pp. 802-811
Author(s):  
Kenta Fujimoto ◽  
Shingo Oidate ◽  
Yuhei Yabuta ◽  
Atsuyuki Takahashi ◽  
Takuya Yamasaki ◽  
...  

2013 ◽  
Vol 133 (2) ◽  
pp. 111-115 ◽  
Author(s):  
Takashi Anezaki ◽  
Suriyon Tansuriyavong ◽  
Chikatoshi Yamada
Keyword(s):  

Author(s):  
LAKSHMI PRANEETHA

Now-a-days data streams or information streams are gigantic and quick changing. The usage of information streams can fluctuate from basic logical, scientific applications to vital business and money related ones. The useful information is abstracted from the stream and represented in the form of micro-clusters in the online phase. In offline phase micro-clusters are merged to form the macro clusters. DBSTREAM technique captures the density between micro-clusters by means of a shared density graph in the online phase. The density data in this graph is then used in reclustering for improving the formation of clusters but DBSTREAM takes more time in handling the corrupted data points In this paper an early pruning algorithm is used before pre-processing of information and a bloom filter is used for recognizing the corrupted information. Our experiments on real time datasets shows that using this approach improves the efficiency of macro-clusters by 90% and increases the generation of more number of micro-clusters within in a short time.


Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


Sign in / Sign up

Export Citation Format

Share Document