Intuitive Methods of Industrial Robot Programming in Advanced Manufacturing Systems

Author(s):  
Kamil Krot ◽  
Vitalii Kutia
Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 226
Author(s):  
Xuyang Zhao ◽  
Cisheng Wu ◽  
Duanyong Liu

Within the context of the large-scale application of industrial robots, methods of analyzing the life-cycle cost (LCC) of industrial robot production have shown considerable developments, but there remains a lack of methods that allow for the examination of robot substitution. Taking inspiration from the symmetry philosophy in manufacturing systems engineering, this article further establishes a comparative LCC analysis model to compare the LCC of the industrial robot production with traditional production at the same time. This model introduces intangible costs (covering idle loss, efficiency loss and defect loss) to supplement the actual costs and comprehensively uses various methods for cost allocation and variable estimation to conduct total cost and the cost efficiency analysis, together with hierarchical decomposition and dynamic comparison. To demonstrate the model, an investigation of a Chinese automobile manufacturer is provided to compare the LCC of welding robot production with that of manual welding production; methods of case analysis and simulation are combined, and a thorough comparison is done with related existing works to show the validity of this framework. In accordance with this study, a simple template is developed to support the decision-making analysis of the application and cost management of industrial robots. In addition, the case analysis and simulations can provide references for enterprises in emerging markets in relation to robot substitution.


2012 ◽  
Vol 516 ◽  
pp. 234-239 ◽  
Author(s):  
Wei Wu ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Recently, new needs have emerged to control not only linear motion but also rotational motion in high-accuracy manufacturing fields. Many five-axis-controlled machining centres are therefore in use. However, one problem has been the difficulty of creating flexible manufacturing systems with methods based on the use of these machine tools. On the other hand, the industrial dual-arm robot has gained attention as a new way to achieve accurate linear and rotational motion in an attempt to control a working plate like a machine tool table. In the present report, a cooperating dual-arm motion is demonstrated to make it feasible to perform stable operation control, such as controlling the working plate to keep a ball rolling around a circular path on it. As a result, we investigated the influence of each axis motion error on a ball-rolling path.


2018 ◽  
pp. 331-334
Author(s):  
Guy Doumeingts ◽  
Amir Pirayesh ◽  
Carlos Agostinho ◽  
Gregory Zacharewicz ◽  
Yves Ducq

10.5772/56753 ◽  
2013 ◽  
Vol 10 (10) ◽  
pp. 354 ◽  
Author(s):  
Germano Veiga ◽  
Pedro Malaca ◽  
Rui Cancela

Sign in / Sign up

Export Citation Format

Share Document