A Hoare Logic Contract Theory: An Exercise in Denotational Semantics

2018 ◽  
pp. 119-127
Author(s):  
Dilian Gurov ◽  
Jonas Westman
Author(s):  
Christian Lidström ◽  
Dilian Gurov

AbstractWhen developing complex software and systems, contracts provide a means for controlling the complexity by dividing the responsibilities among the components of the system in a hierarchical fashion. In specific application areas, dedicated contract theories formalise the notion of contract and the operations on contracts in a manner that supports best the development of systems in that area. At the other end, contract meta-theories attempt to provide a systematic view on the various contract theories by axiomatising their desired properties. However, there exists a noticeable gap between the most well-known contract meta-theory of Benveniste et al. [5], which focuses on the design of embedded and cyber-physical systems, and the established way of using contracts when developing general software, following Meyer’s design-by-contract methodology [18]. At the core of this gap appears to be the notion of procedure: while it is a central unit of composition in software development, the meta-theory does not suggest an obvious way of treating procedures as components.In this paper, we provide a first step towards a contract theory that takes procedures as the basic building block, and is at the same time an instantiation of the meta-theory. To this end, we propose an abstract contract theory for sequential programming languages with procedures, based on denotational semantics. We show that, on the one hand, the specification of contracts of procedures in Hoare logic, and their procedure-modular verification, can be cast naturally in the framework of our abstract contract theory. On the other hand, we also show our contract theory to fulfil the axioms of the meta-theory. In this way, we give further evidence for the utility of the meta-theory, and prepare the ground for combining our instantiation with other, already existing instantiations.


2012 ◽  
pp. 41-66 ◽  
Author(s):  
M. Storchevoy

The paper deals with development of a general theory of the firm. It discusses the demand for such a theory, reviews existing approaches to its generalization, and offers a new variant of general theory of the firm based on the contract theory. The theory is based on minimization of opportunistic behaviour determined by the material structure of production (a classification of ten structural factors is offered). This framework is applied to the analysis of three boundaries problems (boundaries of the job, boundaries of the unit, boundaries of the firm) and five integration dilemmas (vertical, horizontal, functional, related, and conglomerate).


2020 ◽  
Vol 17 (6) ◽  
pp. 847-856
Author(s):  
Shengbing Ren ◽  
Xiang Zhang

The problem of synthesizing adequate inductive invariants lies at the heart of automated software verification. The state-of-the-art machine learning algorithms for synthesizing invariants have gradually shown its excellent performance. However, synthesizing disjunctive invariants is a difficult task. In this paper, we propose a method k++ Support Vector Machine (SVM) integrating k-means++ and SVM to synthesize conjunctive and disjunctive invariants. At first, given a program, we start with executing the program to collect program states. Next, k++SVM adopts k-means++ to cluster the positive samples and then applies SVM to distinguish each positive sample cluster from all negative samples to synthesize the candidate invariants. Finally, a set of theories founded on Hoare logic are adopted to check whether the candidate invariants are true invariants. If the candidate invariants fail the check, we should sample more states and repeat our algorithm. The experimental results show that k++SVM is compatible with the algorithms for Intersection Of Half-space (IOH) and more efficient than the tool of Interproc. Furthermore, it is shown that our method can synthesize conjunctive and disjunctive invariants automatically


Sign in / Sign up

Export Citation Format

Share Document