Towards a New Framework for Service Composition in the Internet of Things

Author(s):  
Samir Berrani ◽  
Ali Yachir ◽  
Mohamed Aissani
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 55290-55304 ◽  
Author(s):  
Xing-Gang Luo ◽  
Hong-Bo Zhang ◽  
Zhong-Liang Zhang ◽  
Yang Yu ◽  
Ke Li

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 56737-56749 ◽  
Author(s):  
Heba Kurdi ◽  
Fadwa Ezzat ◽  
Lina Altoaimy ◽  
Syed Hassan Ahmed ◽  
Kamal Youcef-Toumi

2020 ◽  
Vol 4 (2) ◽  
pp. 90
Author(s):  
Tanweer Alam

In this paper, we propose a mobility framework for connecting the physical things in wireless ad hoc sensor networks. Our area of study is the internet of things by using an ad hoc sensor network. Our purpose in this study is to create a mobility framework for the internet of things. For example- how we connect many physical objects and give them a sense of sensing each other in an ad hoc environment. We can connect different physical objects in a framework of an ad hoc sensor network. Our main contribution is a new methodology for simulating mobility physical objects for the internet of things. Our methodology uses the correct and efficient simulation of the desired study and can be implemented in a framework of ad hoc sensor networks. Our study will generate a new framework for solving the issue of connectivity among physical objects. The proposed mobility framework is feasible to run among physical objects using the ad hoc sensor network.


2021 ◽  
Vol 13 (5) ◽  
pp. 117
Author(s):  
Marco Ferretti ◽  
Serena Nicolazzo ◽  
Antonino Nocera

Sharing data and services in the Internet of Things (IoT) can give rise to significant security concerns with information being sensitive and vulnerable to attacks. In such an environment, objects can be either public resources or owned by humans. For this reason, the need of monitoring the reliability of all involved actors, both persons and smart objects, assuring that they really are who they claim to be, is becoming an essential property of the IoT, with the increase in the pervasive adoption of such a paradigm. In this paper, we tackle this problem by proposing a new framework, called H2O (Human to Object). Our solution is able to continuously authenticate an entity in the network, providing a reliability assessment mechanism based on behavioral fingerprinting. A detailed security analysis evaluates the robustness of the proposed protocol; furthermore, a performance analysis shows the feasibility of our approach.


Sign in / Sign up

Export Citation Format

Share Document