Seven Pillars to Achieve Energy Efficiency in High-Performance Computing Data Centers

Author(s):  
Sardar Mehboob Hussain ◽  
Abdul Wahid ◽  
Munam Ali Shah ◽  
Adnan Akhunzada ◽  
Faheem Khan ◽  
...  
Author(s):  
Pascal Bouvry ◽  
Ghislain Landry Tsafack Chetsa ◽  
Georges Da Costa ◽  
Emmanuel Jeannot ◽  
Laurent Lefèvre ◽  
...  

Computation ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 20 ◽  
Author(s):  
Enrico Calore ◽  
Alessandro Gabbana ◽  
Sebastiano Fabio Schifano ◽  
Raffaele Tripiccione

In the last years, the energy efficiency of HPC systems is increasingly becoming of paramount importance for environmental, technical, and economical reasons. Several projects have investigated the use of different processors and accelerators in the quest of building systems able to achieve high energy efficiency levels for data centers and HPC installations. In this context, Arm CPU architecture has received a lot of attention given its wide use in low-power and energy-limited applications, but server grade processors have appeared on the market just recently. In this study, we targeted the Marvell ThunderX2, one of the latest Arm-based processors developed to fit the requirements of high performance computing applications. Our interest is mainly focused on the assessment in the context of large HPC installations, and thus we evaluated both computing performance and energy efficiency, using the ERT benchmark and two HPC production ready applications. We finally compared the results with other processors commonly used in large parallel systems and highlight the characteristics of applications which could benefit from the ThunderX2 architecture, in terms of both computing performance and energy efficiency. Pursuing this aim, we also describe how ERT has been modified and optimized for ThunderX2, and how to monitor power drain while running applications on this processor.


2014 ◽  
Vol 26 (15) ◽  
pp. 2569-2590 ◽  
Author(s):  
Mateusz Guzek ◽  
Sébastien Varrette ◽  
Valentin Plugaru ◽  
Johnatan E. Pecero ◽  
Pascal Bouvry

2019 ◽  
Author(s):  
Andreas Müller ◽  
Willem Deconinck ◽  
Christian Kühnlein ◽  
Gianmarco Mengaldo ◽  
Michael Lange ◽  
...  

Abstract. In the simulation of complex multi-scale flow problems, such as those arising in weather and climate modelling, one of the biggest challenges is to satisfy operational requirements in terms of time-to-solution and energy-to-solution yet without compromising the accuracy and stability of the calculation. These competing factors require the development of state-of-the-art algorithms that can optimally exploit the targeted underlying hardware and efficiently deliver the extreme computational capabilities typically required in operational forecast production. These algorithms should (i) minimise the energy footprint along with the time required to produce a solution, (ii) maintain a satisfying level of accuracy, (iii) be numerically stable and resilient, in case of hardware or software failure. The European Centre for Medium Range Weather Forecasts (ECMWF) is leading a project called ESCAPE (Energy-efficient SCalable Algorithms for weather Prediction on Exascale supercomputers) which is funded by Horizon 2020 (H2020) under initiative Future and Emerging Technologies in High Performance Computing (FET-HPC). The goal of the ESCAPE project is to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres and hardware vendors. This paper presents an overview of results obtained in the ESCAPE project in which weather prediction have been broken down into smaller building blocks called dwarfs. The participating weather prediction models are: IFS (Integrated Forecasting System), ALARO – a combination of AROME (Application de la Recherche à l'Opérationnel a Meso-Echelle) and ALADIN (Aire Limitée Adaptation Dynamique Développement International) and COSMO-EULAG – a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian/semi-Lagrangian fluid solver). The dwarfs are analysed and optimised in terms of computing performance for different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi). The ESCAPE project includes the development of new algorithms that are specifically designed for better energy efficiency and improved portability through domain specific languages. In addition, the modularity of the algorithmic framework, naturally allows testing different existing numerical approaches, and their interplay with the emerging heterogeneous hardware landscape. Throughout the paper, we will compare different numerical techniques to solve the main building blocks that constitute weather models, in terms of energy efficiency and performance, on a variety of computing technologies.


Sign in / Sign up

Export Citation Format

Share Document