scholarly journals Measuring and tuning energy efficiency on large scale high performance computing platforms.

2011 ◽  
Author(s):  
James H., III Laros
2022 ◽  
Vol 21 ◽  
pp. 23-30
Author(s):  
E. M. Karanikolaou ◽  
M. P. Bekakos

The need for new and more reliable metrics is always in demand. In this paper, a new metric is proposed for the evaluation of high performance computing platforms in conjunction with their energy consumption. The aim of the new metric is to reliably compare different HPC systems concerning their energy efficiency. The metric provides a mean to rank supercomputers of similar capabilities, avoiding the misleading results of metrics like performance-per-watt, currently used for ranking systems, as in the Green500 list, where systems with totally different sizes and capabilities are ranked consecutively. An example of this misuse for two adjacent systems in the Green500 list, is discussed. A comparative study for the energy efficiency of three high performance computing platforms, with different architectures, using the proposed metric is presented.


2021 ◽  
Vol 14 (3) ◽  
pp. 1-21
Author(s):  
Ryota Yasudo ◽  
José G. F. Coutinho ◽  
Ana-Lucia Varbanescu ◽  
Wayne Luk ◽  
Hideharu Amano ◽  
...  

Next-generation high-performance computing platforms will handle extreme data- and compute-intensive problems that are intractable with today’s technology. A promising path in achieving the next leap in high-performance computing is to embrace heterogeneity and specialised computing in the form of reconfigurable accelerators such as FPGAs, which have been shown to speed up compute-intensive tasks with reduced power consumption. However, assessing the feasibility of large-scale heterogeneous systems requires fast and accurate performance prediction. This article proposes Performance Estimation for Reconfigurable Kernels and Systems (PERKS), a novel performance estimation framework for reconfigurable dataflow platforms. PERKS makes use of an analytical model with machine and application parameters for predicting the performance of multi-accelerator systems and detecting their bottlenecks. Model calibration is automatic, making the model flexible and usable for different machine configurations and applications, including hypothetical ones. Our experimental results show that PERKS can predict the performance of current workloads on reconfigurable dataflow platforms with an accuracy above 91%. The results also illustrate how the modelling scales to large workloads, and how performance impact of architectural features can be estimated in seconds.


2021 ◽  
Author(s):  
Mohsen Hadianpour ◽  
Ehsan Rezayat ◽  
Mohammad-Reza Dehaqani

Abstract Due to the significantly drastic progress and improvement in neurophysiological recording technologies, neuroscientists have faced various complexities dealing with unstructured large-scale neural data. In the neuroscience community, these complexities could create serious bottlenecks in storing, sharing, and processing neural datasets. In this article, we developed a distributed high-performance computing (HPC) framework called `Big neuronal data framework' (BNDF), to overcome these complexities. BNDF is based on open-source big data frameworks, Hadoop and Spark providing a flexible and scalable structure. We examined BNDF on three different large-scale electrophysiological recording datasets from nonhuman primate’s brains. Our results exhibited faster runtimes with scalability due to the distributed nature of BNDF. We compared BNDF results to a widely used platform like MATLAB in an equitable computational resource. Compared with other similar methods, using BNDF provides more than five times faster performance in spike sorting as a usual neuroscience application.


2017 ◽  
Vol 33 (2) ◽  
pp. 119-130
Author(s):  
Vinh Van Le ◽  
Hoai Van Tran ◽  
Hieu Ngoc Duong ◽  
Giang Xuan Bui ◽  
Lang Van Tran

Metagenomics is a powerful approach to study environment samples which do not require the isolation and cultivation of individual organisms. One of the essential tasks in a metagenomic project is to identify the origin of reads, referred to as taxonomic assignment. Due to the fact that each metagenomic project has to analyze large-scale datasets, the metatenomic assignment is very much computation intensive. This study proposes a parallel algorithm for the taxonomic assignment problem, called SeMetaPL, which aims to deal with the computational challenge. The proposed algorithm is evaluated with both simulated and real datasets on a high performance computing system. Experimental results demonstrate that the algorithm is able to achieve good performance and utilize resources of the system efficiently. The software implementing the algorithm and all test datasets can be downloaded at http://it.hcmute.edu.vn/bioinfo/metapro/SeMetaPL.html.


Author(s):  
Adrian Jackson ◽  
Michèle Weiland

This chapter describes experiences using Cloud infrastructures for scientific computing, both for serial and parallel computing. Amazon’s High Performance Computing (HPC) Cloud computing resources were compared to traditional HPC resources to quantify performance as well as assessing the complexity and cost of using the Cloud. Furthermore, a shared Cloud infrastructure is compared to standard desktop resources for scientific simulations. Whilst this is only a small scale evaluation these Cloud offerings, it does allow some conclusions to be drawn, particularly that the Cloud can currently not match the parallel performance of dedicated HPC machines for large scale parallel programs but can match the serial performance of standard computing resources for serial and small scale parallel programs. Also, the shared Cloud infrastructure cannot match dedicated computing resources for low level benchmarks, although for an actual scientific code, performance is comparable.


Green computing is a contemporary research topic to address climate and energy challenges. In this chapter, the authors envision the duality of green computing with technological trends in other fields of computing such as High Performance Computing (HPC) and cloud computing on one hand and economy and business on the other hand. For instance, in order to provide electricity for large-scale cloud infrastructures and to reach exascale computing, we need huge amounts of energy. Thus, green computing is a challenge for the future of cloud computing and HPC. Alternatively, clouds and HPC provide solutions for green computing and climate change. In this chapter, the authors discuss this proposition by looking at the technology in detail.


Sign in / Sign up

Export Citation Format

Share Document