Rapid Parallel Evaluation of Integrals in Potential Theory on General Three Dimensional Regions

Author(s):  
Anne Greenbaum ◽  
Anita Mayo ◽  
V. Sonnad
1994 ◽  
Vol 281 ◽  
pp. 159-191 ◽  
Author(s):  
Andreas Dillmann

Based on linear potential theory, the general three-dimensional problem of steady supersonic flow inside quasi-cylindrical ducts is formulated as an initial-boundary-value problem for the wave equation, whose general solution arises as an infinite double series of the Fourier–Bessel type. For a broad class of solutions including the general axisymmetric case, it is shown that the presence of a discontinuity in wall slope leads to a periodic singularity pattern associated with non-uniform convergence of the corresponding series solutions, which thus are unsuitable for direct numerical computation. This practical difficulty is overcome by extending a classical analytical method, viz. Kummer's series transformation. A variety of elementary flow fields is presented, whose complex cellular structure can be qualitatively explained by asymptotic laws governing the propagation of small perturbations on characteristic surfaces.


1986 ◽  
Vol 29 (3) ◽  
pp. 405-411 ◽  
Author(s):  
John F. Ahner

In [7] Plemelj established some fundamental results in two- and three-dimensional potential theory about the eigenvalues of both the double layer potential operator and its adjoint, the normal derivative of the single layer potential operator. In [3] Blumenfeld and Mayer established some additional results concerning the eigenvalues of these integral operators in the case of ℝ2. The spectral properties established by Plemelj [7] and by Blumenfeld and Mayer [3] have had a profound effect in the area of integral equation methods in scattering and potential theory in both ℝ2 and ℝ3.


1997 ◽  
Vol 42 (10) ◽  
pp. 1121-1127 ◽  
Author(s):  
É. L. Amromin ◽  
V. A. Bushkovskii

Author(s):  
Jong Jin Park ◽  
Hiroshi Kawabe ◽  
Mun Sung Kim ◽  
Byung Woo Kim ◽  
Jae Kwang Eom

Side by Side arrangement is considered for the LNG-FPSO offloading operations. In that case, two-body coupled effects are important for LNG-FPSO and LNGC motion and sloshing analysis. The present study is concerned with a ship motion and sloshing analysis considering two-body motion and sloshing-motion coupled effects. The methodology is based on three-dimensional potential theory on a coupled model of LNG-FPSO and LNGC in the frequency domain. To calculation sloshing impact pressures, the violent liquid motion inside tank is treated with three-dimensional numerical model adopting SOLA-VOF scheme.


Sign in / Sign up

Export Citation Format

Share Document