Quantifier-Elimination for the First-Order Theory of Boolean Algebras with Linear Cardinality Constraints

Author(s):  
Peter Revesz
1988 ◽  
Vol 53 (3) ◽  
pp. 912-920 ◽  
Author(s):  
Philip Scowcroft

To eliminate quantifiers in the first-order theory of the p-adic field Qp, Ax and Kochen use a language containing a symbol for a cross-section map n → pn from the value group Z into Qp [1, pp. 48–49]. The primitive-recursive quantifier eliminations given by Cohen [2] and Weispfenning [10] also apply to a language mentioning the cross-section, but none of these authors seems entirely happy with his results. As Cohen says, “all the operations… introduced for our simple functions seem natural, with the possible exception of the map n → pn” [2, p. 146]. So all three authors show that various consequences of quantifier elimination—completeness, decidability, model-completeness—also hold for a theory of Qp not employing the cross-section [1, p. 453; 2, p. 146; 10, §4]. Macintyre directs a more specific complaint against the cross-section [5, p. 605]. Elementary formulae which use it can define infinite discrete subsets of Qp; yet infinite discrete subsets of R are not definable in the language of ordered fields, and so certain analogies between Qp and R suggested by previous model-theoretic work seem to break down.To avoid this problem, Macintyre gives up the cross-section and eliminates quantifiers in a theory of Qp written just in the usual language of fields supplemented by a predicate V for Qp's valuation ring and by predicates Pn for the sets of nth powers in Qp (for all n ≥ 2).


1992 ◽  
Vol 57 (3) ◽  
pp. 988-991 ◽  
Author(s):  
Devdatt P. Dubhashi

In this paper we present a new proof of a decidability result for the firstorder theories of certain subvarieties of Heyting algebras. By a famous result of Grzegorczyk, the full first-order theory of Heyting algebras is undecidable. In contrast, the first-order theory of Boolean algebras and of many interesting subvarieties of Boolean algebras is decidable by a result of Tarski [8]. In fact, Kozen [6] gives a comprehensive quantitative classification of the complexities of the first-order theories of various subclasses of Boolean algebras (including the full variety).This stark contrast may be reconciled from the standpoint of universal algebra as arising out of the byplay between structure and decidability: A good structure theory entails positive decidability results. Boolean algebras have a well-developed structure theory [5], while the corresponding theory for Heyting algebras is quite meagre. Viewed in this way, we may hope to obtain decidability results if we focus attention on subclasses of Heyting algebras with good structural properties.K. Idziak and P. M. Idziak [4] have considered an interesting subvariety of Heyting algebras, , which is the variety generated by all linearly-ordered Heyting algebras. This variety is shown to be the largest subvariety of Heyting algebras with a decidable theory of its finite members. However their proof is rather indirect, proceeding via semantic interpretation into the monadic second order theory of trees. The latter is a powerful theory—it interprets many other theories—but is computationally highly infeasible. In fact, by a celebrated theorem of Rabin, its complexity is not bounded by any elementary recursive function. Consequently, the proof of [4], besides being indirect, also gives no information on the quantitative computational complexity of the theory of .Here we pursue the theme of structure and decidability. We isolate the indecomposable algebras in and use this to prove a theorem on the structure of if -algebras. This theorem relates the -algebras structurally to Boolean algebras. This enables us to bootstrap the known decidability results for Boolean algebras to the variety if .


2001 ◽  
Vol 66 (1) ◽  
pp. 401-406
Author(s):  
Su Gao

AbstractWe prove that the strong Martin conjecture is false. The counterexample is the first-order theory of infinite atomic Boolean algebras. We show that for this class of Boolean algebras, the classification of their (ω + ω)-elementary theories can be reduced to the classification of the elementary theories of their quotient algrbras modulo the Frechét ideals.


2015 ◽  
Vol 16 (3) ◽  
pp. 447-499 ◽  
Author(s):  
Silvain Rideau

We prove field quantifier elimination for valued fields endowed with both an analytic structure that is $\unicode[STIX]{x1D70E}$-Henselian and an automorphism that is $\unicode[STIX]{x1D70E}$-Henselian. From this result we can deduce various Ax–Kochen–Eršov type results with respect to completeness and the independence property. The main example we are interested in is the field of Witt vectors on the algebraic closure of $\mathbb{F}_{p}$ endowed with its natural analytic structure and the lifting of the Frobenius. It turns out we can give a (reasonable) axiomatization of its first-order theory and that this theory does not have the independence property.


2004 ◽  
Vol 1 (3) ◽  
pp. 15-20
Author(s):  
Aleksandar Perovic ◽  
Nedeljko Stefanovic ◽  
Milos Milosevic ◽  
Dejan Ilic

Our main goal is to describe a potential usage of the interpretation method (i.e. formal representation of one first order theory into another) together with quantifier elimination procedures developed in the GIS.


2002 ◽  
Vol 02 (02) ◽  
pp. 145-225 ◽  
Author(s):  
STEFFEN LEMPP ◽  
MIKHAIL PERETYAT'KIN ◽  
REED SOLOMON

In this paper, we investigate the Lindenbaum algebra ℒ(T fin ) of the theory T fin = Th (M fin ) of the class M fin of all finite models of a finite rich signature. We prove that this algebra is an atomic Boolean algebra while its Gödel numeration γ is a [Formula: see text]-numeration. Moreover, the quotient algebra (ℒ(T fin )/ℱ, γ/ℱ) modulo the Fréchet ideal ℱ is a [Formula: see text]-algebra, which is universal over the class of all [Formula: see text] Boolean algebras. These conditions characterize uniquely the algebra ℒ(T fin ); moreover, these conditions characterize up to recursive isomorphism the numerated Boolean quotient algebra (ℒ(T fin )/ℱ, γ/ℱ). These results extend the work of Trakhtenbrot [17] and Vaught [18] on the first order theory of the class of all finite models of a finite rich signature.


Sign in / Sign up

Export Citation Format

Share Document