Extending Finite Model Searching with Congruence Closure Computation

Author(s):  
Jian Zhang ◽  
Hantao Zhang
Author(s):  
Heinz-Dieter Ebbinghaus ◽  
Jörg Flum

Author(s):  
Tengfei Li ◽  
Jing Liu ◽  
Haiying Sun ◽  
Xiang Chen ◽  
Lipeng Zhang ◽  
...  

AbstractIn the past few years, significant progress has been made on spatio-temporal cyber-physical systems in achieving spatio-temporal properties on several long-standing tasks. With the broader specification of spatio-temporal properties on various applications, the concerns over their spatio-temporal logics have been raised in public, especially after the widely reported safety-critical systems involving self-driving cars, intelligent transportation system, image processing. In this paper, we present a spatio-temporal specification language, STSL PC, by combining Signal Temporal Logic (STL) with a spatial logic S4 u, to characterize spatio-temporal dynamic behaviors of cyber-physical systems. This language is highly expressive: it allows the description of quantitative signals, by expressing spatio-temporal traces over real valued signals in dense time, and Boolean signals, by constraining values of spatial objects across threshold predicates. STSL PC combines the power of temporal modalities and spatial operators, and enjoys important properties such as finite model property. We provide a Hilbert-style axiomatization for the proposed STSL PC and prove the soundness and completeness by the spatio-temporal extension of maximal consistent set and canonical model. Further, we demonstrate the decidability of STSL PC and analyze the complexity of STSL PC. Besides, we generalize STSL to the evolution of spatial objects over time, called STSL OC, and provide the proof of its axiomatization system and decidability.


2009 ◽  
Vol 74 (4) ◽  
pp. 1171-1205 ◽  
Author(s):  
Emil Jeřábek

AbstractWe develop canonical rules capable of axiomatizing all systems of multiple-conclusion rules over K4 or IPC, by extension of the method of canonical formulas by Zakharyaschev [37]. We use the framework to give an alternative proof of the known analysis of admissible rules in basic transitive logics, which additionally yields the following dichotomy: any canonical rule is either admissible in the logic, or it is equivalent to an assumption-free rule. Other applications of canonical rules include a generalization of the Blok–Esakia theorem and the theory of modal companions to systems of multiple-conclusion rules or (unitary structural global) consequence relations, and a characterization of splittings in the lattices of consequence relations over monomodal or superintuitionistic logics with the finite model property.


2015 ◽  
Vol 65 (4) ◽  
Author(s):  
Giovanna D’Agostino ◽  
Giacomo Lenzi

AbstractIn this paper we consider the alternation hierarchy of the modal μ-calculus over finite symmetric graphs and show that in this class the hierarchy is infinite. The μ-calculus over the symmetric class does not enjoy the finite model property, hence this result is not a trivial consequence of the strictness of the hierarchy over symmetric graphs. We also find a lower bound and an upper bound for the satisfiability problem of the μ-calculus over finite symmetric graphs.


1974 ◽  
Vol 39 (3) ◽  
pp. 519-548 ◽  
Author(s):  
Stål O. Aanderaa ◽  
Harry R. Lewis

Let Q be the class of closed quantificational formulas ∀x∃u∀yM without identity such that M is a quantifier-free matrix containing only monadic and dyadic predicate letters and containing no atomic subformula of the form Pyx or Puy for any predicate letter P. In [DKW] Dreben, Kahr, and Wang conjectured that Q is a solvable class for satisfiability and indeed contains no formula having only infinite models. As evidence for this conjecture they noted the solvability of the subclass of Q consisting of those formulas whose atomic subformulas are of only the two forms Pxy, Pyu and the fact that each such formula that has a model has a finite model. Furthermore, it seemed likely that the techniques used to show this subclass solvable could be extended to show the solvability of the full class Q, while the syntax of Q is so restricted that it seemed impossible to express in formulas of Q any unsolvable problem known at that time.In 1966 Aanderaa refuted this conjecture. He first constructed a very complex formula in Q having an infinite model but no finite model, and then, by an extremely intricate argument, showed that Q (in fact, the subclass Q2 defined below) is unsolvable ([Aa1], [Aa2]). In this paper we develop stronger tools in order to simplify and extend the results of [Aa2]. Specifically, we show the unsolvability of an apparently new combinatorial problem, which we shall call the linear sampling problem (defined in §1.2 and §2.3). From the unsolvability of this problem there follows the unsolvability of two proper subclasses of Q, which we now define. For each i ≥ 0, let Pi be a dyadic predicate letter and let Ri be a monadic predicate letter.


Author(s):  
Ronald Harrop

In this paper we will be concerned primarily with weak, strong and simple models of a propositional calculus, simple models being structures of a certain type in which all provable formulae of the calculus are valid. It is shown that the finite model property defined in terms of simple models holds for all calculi. This leads to a new proof of the fact that there is no general effective method for testing, given a finite structure and a calculus, whether or not the structure is a simple model of the calculus.


Sign in / Sign up

Export Citation Format

Share Document