EME*: Extending EME to Handle Arbitrary-Length Messages with Associated Data

Author(s):  
Shai Halevi
2021 ◽  
Vol 9 (1) ◽  
pp. 19-21
Author(s):  
Zoran Stanić

Abstract We derive an inequality that includes the largest eigenvalue of the adjacency matrix and walks of an arbitrary length of a signed graph. We also consider certain particular cases.


Science ◽  
2021 ◽  
Vol 372 (6539) ◽  
pp. eabe9230 ◽  
Author(s):  
Elan Ness-Cohn ◽  
Ravi Allada ◽  
Rosemary Braun

Ray et al. (Reports, 14 February 2020, p. 800) report apparent transcriptional circadian rhythms in mouse tissues lacking the core clock component BMAL1. To better understand these surprising results, we reanalyzed the associated data. We were unable to reproduce the original findings, nor could we identify reliably cycling genes. We conclude that there is insufficient evidence to support circadian transcriptional rhythms in the absence of Bmal1.


1987 ◽  
Vol 178 ◽  
pp. 31-52 ◽  
Author(s):  
W. K. Melville ◽  
Karl R. Helfrich

The evolution of weakly-nonlinear two-layer flow over topography is considered. The governing equations are formulated to consider the effects of quadratic and cubic nonlinearity in the transcritical regime of the internal mode. In the absence of cubic nonlinearity an inhomogeneous Korteweg-de Vries equation describes the interfacial displacement. Numerical solutions of this equation exhibit undular bores or sequences of Boussinesq solitary waves upstream in a transcritical regime. For sufficiently large supercritical Froude numbers, a locally steady flow is attained over the topography. In that regime in which both quadratic and cubic nonlinearity are comparable, the evolution of the interface is described by an inhomogeneous extended Kortewegde Vries (EKdV) equation. This equation displays undular bores upstream in a subcritical regime, but monotonic bores in a transcritical regime. The monotonic bores are solitary wave solutions of the corresponding homogeneous EKdV equation. Again, locally steady flow is attained for sufficiently large supercritical Froude numbers. The predictions of the numerical solutions are compared with laboratory experiments which show good agreement with the solutions of the forced EKdV equation for some range of parameters. It is shown that a recent result of Miles (1986), which predicts an unsteady transcritical regime for single-layer flows, may readily be extended to two-layer flows (described by the forced KdV equation) and is in agreement with the results presented here.Numerical experiments exploiting the symmetry of the homogeneous EKdV equation show that solitary waves of fixed amplitude but arbitrary length may be generated in systems described by the inhomogeneous EKdV equation.


1966 ◽  
Vol 33 (2) ◽  
pp. 356-362 ◽  
Author(s):  
W. G. Knauss

Stresses in an infinitely long strip of finite width containing a straight semi-infinite crack have been calculated for the case that the clamped boundaries are displaced normal to the crack. The solution is obtained by the Wiener-Hopf technique. The stresses are given in the form of asymptotic expansions in the immediate crack tip vicinity and for a larger region of interest in graphical form. The effect of prescribing displacements on the boundary close to a crack instead of stresses far away is discussed briefly. Together with an asymptotic solution for a small crack, the result is used to estimate the stress field around a crack of arbitrary length in an infinite strip. The usefulness of this crack geometry in laboratory investigations of fracture mechanics is pointed out.


Sign in / Sign up

Export Citation Format

Share Document