Improving the Alphabet-Size in High Noise, Almost Optimal Rate List Decodable Codes

Author(s):  
Eran Rom ◽  
Amnon Ta-Shma
2021 ◽  
Vol 68 (5) ◽  
pp. 1-39
Author(s):  
Bernhard Haeupler ◽  
Amirbehshad Shahrasbi

We introduce synchronization strings , which provide a novel way to efficiently deal with synchronization errors , i.e., insertions and deletions. Synchronization errors are strictly more general and much harder to cope with than more commonly considered Hamming-type errors , i.e., symbol substitutions and erasures. For every ε > 0, synchronization strings allow us to index a sequence with an ε -O(1) -size alphabet, such that one can efficiently transform k synchronization errors into (1 + ε)k Hamming-type errors . This powerful new technique has many applications. In this article, we focus on designing insdel codes , i.e., error correcting block codes (ECCs) for insertion-deletion channels. While ECCs for both Hamming-type errors and synchronization errors have been intensely studied, the latter has largely resisted progress. As Mitzenmacher puts it in his 2009 survey [30]: “ Channels with synchronization errors...are simply not adequately understood by current theory. Given the near-complete knowledge, we have for channels with erasures and errors...our lack of understanding about channels with synchronization errors is truly remarkable. ” Indeed, it took until 1999 for the first insdel codes with constant rate, constant distance, and constant alphabet size to be constructed and only since 2016 are there constructions of constant rate insdel codes for asymptotically large noise rates. Even in the asymptotically large or small noise regimes, these codes are polynomially far from the optimal rate-distance tradeoff. This makes the understanding of insdel codes up to this work equivalent to what was known for regular ECCs after Forney introduced concatenated codes in his doctoral thesis 50 years ago. A straightforward application of our synchronization strings-based indexing method gives a simple black-box construction that transforms any ECC into an equally efficient insdel code with only a small increase in the alphabet size. This instantly transfers much of the highly developed understanding for regular ECCs into the realm of insdel codes. Most notably, for the complete noise spectrum, we obtain efficient “near-MDS” insdel codes, which get arbitrarily close to the optimal rate-distance tradeoff given by the Singleton bound. In particular, for any δ ∈ (0,1) and ε > 0, we give a family of insdel codes achieving a rate of 1 - δ - ε over a constant-size alphabet that efficiently corrects a δ fraction of insertions or deletions.


2003 ◽  
Author(s):  
A. Butler ◽  
B. Bixby ◽  
M. Gasper ◽  
M. Kelley

2010 ◽  
Vol 32 (11) ◽  
pp. 2630-2635
Author(s):  
Yong-sheng Guan ◽  
Qun-sheng Zuo ◽  
Hong-wei Liu

Author(s):  
A. V. Mazin ◽  
M. Yu. Aliyev

The article investigates the problem of providing high noise immunity radar under the influence of passive and intentional interference. The purpose of radio operation of the radar is to create conditions that would impede the operation of systems and minimize its effectiveness. The main method of radio transmission is still creating (staging) interference. Modern radar systems must solve the tasks in terms of electronic suppression using, including intentional interference and under severe time constraints. It is shown that the most effective way to improve the noise immunity of radar systems designed to operate in multipoint space, including non-stationary, interference is adaptive space-time processing of the received signals, based on the angular selection of targets, due to the formation of zeros in the directional diagram in the direction of interference sources. This problem is solved by determining the accuracy of the direction finding of interference sources and is achieved by the joint operation of the antenna array and multi-channel signal processing devices, namely the separation of interference signals on different receiving channels.


Author(s):  
Philip James

Elements of the physical aspects of urban environments determine which micro-organisms, plants, and animals live in urban environments. In this chapter, climate, air, water, soil, noise, and light are discussed. Urban environments are affected by the climate of the region in which they are located, and in turn and create their own, distinctive urban climate. Air, water, and soil are all affected by urbanization. Pollution of these elements is common. High noise levels and artificial light at night (ALAN—a new phenomenon) are both strongly associated with urban environments. Details of both are discussed. The discussion in this chapter provides a foundation for further exploration of the diversity of life in urban environments and for later exploration of how organisms adapt to urban living, which will be discussed in Parts II and III.


2009 ◽  
Author(s):  
Yongsheng Guan ◽  
Hongwei Liu ◽  
Feng Chen

Sign in / Sign up

Export Citation Format

Share Document