Optimal Design of the Suspension System of Railway Vehicles

Author(s):  
Giampiero Mastinu ◽  
Massimiliano Gobbi ◽  
Carlo Miano
Author(s):  
Xiaotian Xu ◽  
Yousef Sardahi ◽  
Chenyu Zheng

This paper presents a many-objective optimal design of a four-degree-of-freedom passive suspension system with an inerter device. In the optimization process, four objectives are considered: passenger’s head acceleration (HA), crest factor (CF), suspension deflection (SD), and tire deflection (TD). The former two objectives are important for the health and comfort of the driver and the latter two quantify the suspension system performance. The spring ks and damping cs constants between the sprung mass and unsprung mass, the inertance coefficient B, and the tire spring constant ky are considered as design parameters. The non-dominated sorting genetic algorithm (NSGA-II) is used to solve this optimization problem. The results show that there are many optimal trade-offs among the design objectives that could be applicable to suspension design in the industry.


2008 ◽  
Vol 2 (2) ◽  
pp. 518-527 ◽  
Author(s):  
Hung Chi NGUYEN ◽  
Akira SONE ◽  
Daisuke IBA ◽  
Arata MASUDA

1987 ◽  
Vol 57 (1) ◽  
pp. 25-38 ◽  
Author(s):  
A. D. Pater

Author(s):  
Juan C. Blanco ◽  
Luis E. Muñoz

The vehicle optimal design is a multi-objective multi-domain optimization problem. Each design aspect must be analyzed by taking into account the interactions present with other design aspects. Given the size and complexity of the problem, the application of global optimization methodologies is not suitable; hierarchical problem decomposition is beneficial for the problem analysis. This paper studies the handling dynamics optimization problem as a sub-problem of the vehicle optimal design. This sub-problem is an important part of the overall vehicle design decomposition. It is proposed that the embodiment design stage can be performed in an optimal viewpoint with the application of the analytical target cascading (ATC) optimization strategy. It is also proposed that the design variables should have sufficient physical significance, but also give the overall design enough design degrees of freedom. In this way, other optimization sub-problems can be managed with a reduced variable redundancy and sub-problem couplings. Given that the ATC strategy is an objective-driven methodology, it is proposed that the objectives of the handling dynamics, which is a sub-problem in the general ATC problem, can be defined from a Pareto optimal set at a higher optimization level. This optimal generation of objectives would lead to an optimal solution as seen at the upper-level hierarchy. The use of a lumped mass handling dynamics model is proposed in order to manage an efficient optimization process based in handling dynamics simulations. This model contains detailed information of the tire properties modeled by the Pacejka tire model, as well as linear characteristics of the suspension system. The performance of this model is verified with a complete multi-body simulation program such as ADAMS/car. The handling optimization problem is presented including the proposed design variables, the handling dynamics simulation model and a case study in which a double wishbone suspension system of an off-road vehicle is analyzed. In the case study, the handling optimization problem is solved by taking into account couplings with the suspension kinematics optimization problem. The solution of this coupled problem leads to the partial geometry definition of the suspension system mechanism.


AIP Advances ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 025115
Author(s):  
Jae-Hyeon Lim ◽  
Hyung-Woo Lee ◽  
Ik-Hyun Jo ◽  
Geochul Jeong ◽  
Taehyung Kim ◽  
...  

Author(s):  
Sunil Kumar Sharma ◽  
Anil Kumar

In a railway vehicle, vibrations are generated due to the interaction between wheel and track. To evaluate the effect of vibrations on the ride quality and comfort of a passenger vehicle, the Sperling's ride index method is frequently adopted. This paper focuses on the feasibility of improving the ride quality and comfort of railway vehicles using semiactive secondary suspension based on magnetorheological fluid dampers. Equations of vertical, pitch and roll motions of car body and bogies are developed for an existing rail vehicle. Moreover, nonlinear stiffness and damping functions of passive suspension system are extracted from experimental data. In view of improvement in the ride quality and comfort of the rail vehicle, a magnetorheological damper is integrated in the secondary vertical suspension system. Parameters of the magnetorheological damper depend on current, amplitude and frequency of excitations. Three semi-active suspension strategies with magnetorheological damper are analysed at different running speeds and for periodic track irregularity. The performance indices calculated at different semi-active strategies are juxtaposed with the nonlinear passive suspension system. Simulation results establish that magnetorheological damper strategies in the secondary suspension system of railway vehicles reduce the vertical vibrations to a great extent compared to the existing passive system. Moreover, they lead to improved ride quality and passenger comfort.


Sign in / Sign up

Export Citation Format

Share Document