Multi-Objective Optimal Design of Passive Suspension System With Inerter Damper

Author(s):  
Xiaotian Xu ◽  
Yousef Sardahi ◽  
Chenyu Zheng

This paper presents a many-objective optimal design of a four-degree-of-freedom passive suspension system with an inerter device. In the optimization process, four objectives are considered: passenger’s head acceleration (HA), crest factor (CF), suspension deflection (SD), and tire deflection (TD). The former two objectives are important for the health and comfort of the driver and the latter two quantify the suspension system performance. The spring ks and damping cs constants between the sprung mass and unsprung mass, the inertance coefficient B, and the tire spring constant ky are considered as design parameters. The non-dominated sorting genetic algorithm (NSGA-II) is used to solve this optimization problem. The results show that there are many optimal trade-offs among the design objectives that could be applicable to suspension design in the industry.

2018 ◽  
Vol 25 (3/4) ◽  
pp. 508 ◽  
Author(s):  
Mahmoud Mohsen ◽  
Hisham Kamel ◽  
Alhossein Mostafa Sharaf ◽  
Samir Mohamed El Demerdash

Author(s):  
A Khadr ◽  
A Houidi ◽  
L Romdhane

This paper focuses on the design and the optimization of a semi-active suspension system used in a full dynamic model of a two-wheeled vehicle. The two-wheeled vehicle is considered as a multibody system. The equations of motion are obtained by applying an approach used widely in the robotic modeling field. Two basic strategies, called the continuous skyhook and the modified skyhook, are used to control the semi-active suspension system. Using the developed model, a multi-objective optimization procedure, based on Genetic Algorithms (NSGA-II), is proposed. The objective is to optimize the parameters of the two control laws of the semi-active suspension systems, in order to improve the ride comfort and the safety. To study the effectiveness of this approach, the results of the optimization are used in different simulations and the results are compared with those obtained from a simulation of a two-wheeled vehicle equipped with a passive suspension system. The results show that both control strategies of the semi-active suspension system give an improvement compared to the passive suspension system. Moreover, the multi-objective optimization results show that the simplified law “Modified Skyhook” ensures a higher ride safety, whereas the “Continuous Skyhook” is more effective in obtaining a higher level of ride comfort.


2015 ◽  
Vol 8 (3) ◽  
pp. 203
Author(s):  
Muhammad Sani Gaya ◽  
Amir Bature ◽  
Lukman A. Yusuf ◽  
I. S. Madugu ◽  
Ukashatu Abubakar ◽  
...  

2015 ◽  
Vol 1115 ◽  
pp. 440-445 ◽  
Author(s):  
Musa Mohammed Bello ◽  
Amir Akramin Shafie ◽  
Raisuddin Khan

The main purpose of vehicle suspension system is to isolate the vehicle main body from any road geometrical irregularity in order to improve the passengers ride comfort and to maintain good handling stability. The present work aim at designing a control system for an active suspension system to be applied in today’s automotive industries. The design implementation involves construction of a state space model for quarter car with two degree of freedom and a development of full state-feedback controller. The performance of the active suspension system was assessed by comparing it response with that of the passive suspension system. Simulation using Matlab/Simulink environment shows that, even at resonant frequency the active suspension system produces a good dynamic response and a better ride comfort when compared to the passive suspension system.


2008 ◽  
Vol 2 (2) ◽  
pp. 518-527 ◽  
Author(s):  
Hung Chi NGUYEN ◽  
Akira SONE ◽  
Daisuke IBA ◽  
Arata MASUDA

Author(s):  
Olugbenga M. Anubi ◽  
Carl D. Crane

A new variable stiffness suspension system based on a recent variable stiffness mechanism is proposed. The overall system is composed of the traditional passive suspension system augmented with a variable stiffness mechanism. The main idea is to improve suspension performance by varying stiffness in response to road disturbance. The system is analyzed using a quarter car model. The passive case shows much better performance in ride comfort over the tradition counterpart. Analysis of the invariant equation shows that the car body acceleration transfer function magnitude can be reduced at both the tire-hop and rattle space frequencies using the lever displacement transfer function thereby resulting in a better performance over the traditional passive suspension system. An H∞ controller is designed to correct for the performance degradation in the rattle space thereby providing the best trade-off between the ride comfort, suspension deflection and road holding.


Author(s):  
S. D. JABEEN

In this paper, we have formulated mathematical models to optimize the bouncing transmissibility of the sprung mass of the half car system with passengers' seat suspensions considering different road conditions. The corresponding problem has been solved with the help of advanced real coded Genetic Algorithm (GA). The nonlinearity of suspension spring and damper, which are the most important characteristics of the suspension, has been taken into account in order to validate the model to real applications. The nonlinear cubic polynomial has been used to describe the spring characteristic and a quadratic polynomial has been used to describe the damper characteristic. The coefficients of each polynomial represent the design parameters of the suspension system and are to be determined. To find these parameters we have formulated a nonlinear optimization problem in which the bouncing transmissibility of the sprung mass at the center of mass has been minimized with respect to technological constraints and the constraints which satisfy the performance as per ISO 2631 standards. The advanced real coded GA has been used to solve this problem in time domain and the results obtained have been compared to those obtained using the existing design parameters. The objective function and the constraints have been evaluated by simulating the vehicle model over two roads with multiple bumps at uniform velocity.


Sign in / Sign up

Export Citation Format

Share Document