A Visual Quality Inspection System Based on a Hierarchical 3D Pose Estimation Algorithm

Author(s):  
Clemens von Bank ◽  
Dariu M. Gavrila ◽  
Christian Wöhler
2019 ◽  
Vol 9 (12) ◽  
pp. 2478 ◽  
Author(s):  
Jui-Yuan Su ◽  
Shyi-Chyi Cheng ◽  
Chin-Chun Chang ◽  
Jing-Ming Chen

This paper presents a model-based approach for 3D pose estimation of a single RGB image to keep the 3D scene model up-to-date using a low-cost camera. A prelearned image model of the target scene is first reconstructed using a training RGB-D video. Next, the model is analyzed using the proposed multiple principal analysis to label the viewpoint class of each training RGB image and construct a training dataset for training a deep learning viewpoint classification neural network (DVCNN). For all training images in a viewpoint class, the DVCNN estimates their membership probabilities and defines the template of the class as the one of the highest probability. To achieve the goal of scene reconstruction in a 3D space using a camera, using the information of templates, a pose estimation algorithm follows to estimate the pose parameters and depth map of a single RGB image captured by navigating the camera to a specific viewpoint. Obviously, the pose estimation algorithm is the key to success for updating the status of the 3D scene. To compare with conventional pose estimation algorithms which use sparse features for pose estimation, our approach enhances the quality of reconstructing the 3D scene point cloud using the template-to-frame registration. Finally, we verify the ability of the established reconstruction system on publicly available benchmark datasets and compare it with the state-of-the-art pose estimation algorithms. The results indicate that our approach outperforms the compared methods in terms of the accuracy of pose estimation.


Author(s):  
Hanieh Deilamsalehy ◽  
Timothy C. Havens ◽  
Joshua Manela

Precise, robust, and consistent localization is an important subject in many areas of science such as vision-based control, path planning, and simultaneous localization and mapping (SLAM). To estimate the pose of a platform, sensors such as inertial measurement units (IMUs), global positioning system (GPS), and cameras are commonly employed. Each of these sensors has their strengths and weaknesses. Sensor fusion is a known approach that combines the data measured by different sensors to achieve a more accurate or complete pose estimation and to cope with sensor outages. In this paper, a three-dimensional (3D) pose estimation algorithm is presented for a unmanned aerial vehicle (UAV) in an unknown GPS-denied environment. A UAV can be fully localized by three position coordinates and three orientation angles. The proposed algorithm fuses the data from an IMU, a camera, and a two-dimensional (2D) light detection and ranging (LiDAR) using extended Kalman filter (EKF) to achieve accurate localization. Among the employed sensors, LiDAR has not received proper attention in the past; mostly because a two-dimensional (2D) LiDAR can only provide pose estimation in its scanning plane, and thus, it cannot obtain a full pose estimation in a 3D environment. A novel method is introduced in this paper that employs a 2D LiDAR to improve the full 3D pose estimation accuracy acquired from an IMU and a camera, and it is shown that this method can significantly improve the precision of the localization algorithm. The proposed approach is evaluated and justified by simulation and real world experiments.


2021 ◽  
Vol 72 ◽  
pp. 102200
Author(s):  
Zvezdan Lončarević ◽  
Andrej Gams ◽  
Simon Reberšek ◽  
Bojan Nemec ◽  
Jure Škrabar ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5039
Author(s):  
Tae-Hyun Kim ◽  
Hye-Rin Kim ◽  
Yeong-Jun Cho

In this study, we present a framework for product quality inspection based on deep learning techniques. First, we categorize several deep learning models that can be applied to product inspection systems. In addition, we explain the steps for building a deep-learning-based inspection system in detail. Second, we address connection schemes that efficiently link deep learning models to product inspection systems. Finally, we propose an effective method that can maintain and enhance a product inspection system according to improvement goals of the existing product inspection systems. The proposed system is observed to possess good system maintenance and stability owing to the proposed methods. All the proposed methods are integrated into a unified framework and we provide detailed explanations of each proposed method. In order to verify the effectiveness of the proposed system, we compare and analyze the performance of the methods in various test scenarios. We expect that our study will provide useful guidelines to readers who desire to implement deep-learning-based systems for product inspection.


Procedia CIRP ◽  
2021 ◽  
Vol 99 ◽  
pp. 496-501
Author(s):  
Ivan Vishev ◽  
Claus-Philipp Feuring ◽  
Oliver Bringmann

Author(s):  
Jun Liu ◽  
Henghui Ding ◽  
Amir Shahroudy ◽  
Ling-Yu Duan ◽  
Xudong Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document