Design of Earth Dams Allowing Temporary Overtopping Based on Hydraulic Failure Experiments and Flood Analysis

Author(s):  
K. Matsushima ◽  
Y. Mohri ◽  
S. Yamazaki ◽  
T. Hori ◽  
M. Ariyoshi ◽  
...  
2022 ◽  
Author(s):  
Karrar S. Mahdi ◽  
Ms Ab Razak ◽  
F. Hejazi
Keyword(s):  

2019 ◽  
Vol 116 ◽  
pp. 103182 ◽  
Author(s):  
Farideh Hosseinejad ◽  
Farhoud Kalateh ◽  
Alireza Mojtahedi

2021 ◽  
Vol 132 ◽  
pp. 103807
Author(s):  
Stefania Sica ◽  
Angelo Dello Russo

2021 ◽  
Author(s):  
William A Hoffmann ◽  
Amanda C Rodrigues ◽  
Nicholas Uncles ◽  
Lorenzo Rossi

Abstract The heat plume associated with fire has been hypothesized to cause sufficient water loss from trees to induce embolism and hydraulic failure. However, it is unclear whether the water transport path remains sufficiently intact during scorching or burning of foliage to sustain high water loss. We measured water uptake by branches of Magnolia grandiflora while exposing them to a range of fire intensities, and examined factors influencing continued water uptake after fire. Burning caused a 22-fold mean increase in water uptake, with greatest rates of water loss observed at burn intensities that caused complete consumption of leaves. Such rapid uptake is possible only with steep gradients in water potential, which would likely result in substantial cavitation of xylem and loss of conductivity in intact stems. Water uptake continued after burning was complete, and was greatest following burn intensities that killed leaves but did not consume them. This post-fire uptake was mostly driven by rehydration of the remaining tissues, rather than evaporation from the tissues. Our results indicate that the fire-plume hypothesis can be expanded to include a wide range of burning conditions experienced by plants. High rates of water loss are sustained during burning, even when leaves are killed or completely consumed.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 474
Author(s):  
Daniel Constantin Diaconu ◽  
Romulus Costache ◽  
Mihnea Cristian Popa

Scientific papers present a wide range of methods of flood analysis and forecasting. Floods are a phenomenon with significant socio-economic implications, for which many researchers try to identify the most appropriate methodologies to analyze their temporal and spatial development. This research aims to create an overview of flood analysis and forecasting methods. The study is based on the need to select and group papers into well-defined methodological categories. The article provides an overview of recent developments in the analysis of flood methodologies and shows current research directions based on this overview. The study was performed taking into account the information included in the Web of Science Core Collection, which brought together 1326 articles. The research concludes with a discussion on the relevance, ease of application, and usefulness of the methodologies.


Sign in / Sign up

Export Citation Format

Share Document