Large-Scale Shear Tests on Interface Shear Performance of Landfill Liner Systems

Author(s):  
M. Kamon ◽  
S. Mariappan ◽  
T. Katsumi ◽  
T. Inui ◽  
T. Akai
2014 ◽  
Vol 923 ◽  
pp. 217-220 ◽  
Author(s):  
Josef Holomek ◽  
Miroslav Bajer ◽  
Jan Barnat ◽  
Martin Vild

Composite slab is being used for horizontal structures. The sheeting can serve as a permanent formwork and no additional reinforcement can be required. The slabs are then fast and easy assemble construction which can be effectively used in reconstructions. One of the meanings to assure composite action of composite steel-concrete slabs is prepressed embossments. Its main disadvantage is that the design of a new type of sheeting requires expensive and time consuming large-scale laboratory testing which hamper its widespread commercial usage. Small-scale shear tests present a less expensive alternative to the large-scale tests but its results cannot be simply used for the design of the whole slab. The results from small-scale tests with different options are compared in this paper. Also a possibility of contribution of FE simulation results to the small-scale tests usage is investigated.


2021 ◽  
Vol 13 (15) ◽  
pp. 8201
Author(s):  
Lihua Li ◽  
Han Yan ◽  
Henglin Xiao ◽  
Wentao Li ◽  
Zhangshuai Geng

It is well known that geomembranes frequently and easily fail at the seams, which has been a ubiquitous problem in various applications. To avoid the failure of geomembrane at the seams, photocuring was carried out with 1~5% photoinitiator and 2% carbon black powder. This geomembrane can be sprayed and cured on the soil surface. The obtained geomembrane was then used as a barrier, separator, or reinforcement. In this study, the direct shear tests were carried out with the aim to investigate the interfacial characteristics of photocured geomembrane–clay/sand. The results show that a 2% photoinitiator has a significant effect on the impermeable layer for the photocured geomembrane–clay interface. As for the photocured geomembrane–sand interface, it is reasonable to choose a geomembrane made from a 4% photoinitiator at the boundary of the drainage layer and the impermeable layer in the landfill. In the cover system, it is reasonable to choose a 5% photoinitiator geomembrane. Moreover, as for the interface between the photocurable geomembrane and clay/sand, the friction coefficient increases initially and decreases afterward with the increase of normal stress. Furthermore, the friction angle of the interface between photocurable geomembrane and sand is larger than that of the photocurable geomembrane–clay interface. In other words, the interface between photocurable geomembrane and sand has better shear and tensile crack resistance.


Landslides ◽  
2009 ◽  
Vol 6 (3) ◽  
pp. 231-240 ◽  
Author(s):  
Daniela Boldini ◽  
Fawu Wang ◽  
Kyoji Sassa ◽  
Paolo Tommasi

Sign in / Sign up

Export Citation Format

Share Document