2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Songnian He ◽  
Wenlong Zhu

LetHbe a real Hilbert space andC⊂H a closed convex subset. LetT:C→Cbe a nonexpansive mapping with the nonempty set of fixed pointsFix(T). Kim and Xu (2005) introduced a modified Mann iterationx0=x∈C,yn=αnxn+(1−αn)Txn,xn+1=βnu+(1−βn)yn, whereu∈Cis an arbitrary (but fixed) element, and{αn}and{βn}are two sequences in(0,1). In the case where0∈C, the minimum-norm fixed point ofTcan be obtained by takingu=0. But in the case where0∉C, this iteration process becomes invalid becausexnmay not belong toC. In order to overcome this weakness, we introduce a new modified Mann iteration by boundary point method (see Section 3 for details) for finding the minimum norm fixed point of Tand prove its strong convergence under some assumptions. Since our algorithm does not involve the computation of the metric projectionPC, which is often used so that the strong convergence is guaranteed, it is easy implementable. Our results improve and extend the results of Kim, Xu, and some others.


2019 ◽  
Vol 28 (2) ◽  
pp. 191-198
Author(s):  
T. M. M. SOW

It is well known that Krasnoselskii-Mann iteration of nonexpansive mappings find application in many areas of mathematics and know to be weakly convergent in the infinite dimensional setting. In this paper, we introduce and study an explicit iterative scheme by a modified Krasnoselskii-Mann algorithm for approximating fixed points of multivalued quasi-nonexpansive mappings in Banach spaces. Strong convergence of the sequence generated by this algorithm is established. There is no compactness assumption. The results obtained in this paper are significant improvement on important recent results.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 765 ◽  
Author(s):  
Abed ◽  
Taresh

Iterative methods were employed to obtain solutions of linear and non-linear systems of equations, solutions of differential equations, and roots of equations. In this paper, it was proved that s-iteration with error and Picard–Mann iteration with error converge strongly to the unique fixed point of Lipschitzian strongly pseudo-contractive mapping. This convergence was almost F-stable and F-stable. Applications of these results have been given to the operator equations Fx=f and x+Fx=f, where F is a strongly accretive and accretive mappings of X into itself.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1153
Author(s):  
Najla Altwaijry ◽  
Tahani Aldhaban ◽  
Souhail Chebbi ◽  
Hong-Kun Xu

We show that the viscosity approximation method coupled with the Krasnoselskii–Mann iteration generates a sequence that strongly converges to a fixed point of a given nonexpansive mapping in the setting of uniformly smooth Banach spaces. Our result shows that the geometric property (i.e., uniform smoothness) of the underlying space plays a role in relaxing the conditions on the choice of regularization parameters and step sizes in iterative methods.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 481 ◽  
Author(s):  
Buthinah Dehaish ◽  
Mohamed Khamsi

In this work, we extend the fundamental results of Schu to the class of monotone asymptotically nonexpansive mappings in modular function spaces. In particular, we study the behavior of the Fibonacci–Mann iteration process, introduced recently by Alfuraidan and Khamsi, defined by


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 83974-83985
Author(s):  
Wei Wang ◽  
Xiaohui Hu ◽  
Abdul Aziz Shahid ◽  
Mingye Wang
Keyword(s):  

2009 ◽  
Vol 2009 ◽  
pp. 1-20 ◽  
Author(s):  
Somyot Plubtieng ◽  
Wanna Sriprad

We prove strong and weak convergence theorems for a new resolvent of maximal monotone operators in a Banach space and give an estimate of the convergence rate of the algorithm. Finally, we apply our convergence theorem to the convex minimization problem. The result present in this paper extend and improve the corresponding result of Ibaraki and Takahashi (2007), and Kim and Xu (2005).


2015 ◽  
Vol 2015 (1) ◽  
Author(s):  
Buthinah Abdullatif Bin Dehaish ◽  
Mohamed Amine Khamsi

Sign in / Sign up

Export Citation Format

Share Document