Ultra high performance fibre reinforced cement composite under dynamic loading

Author(s):  
Silvia Weber ◽  
Andreas Rümmelin
2017 ◽  
Vol 57 (2) ◽  
pp. 97 ◽  
Author(s):  
Ondřej Holčapek ◽  
Pavel Reiterman ◽  
Petr Konvalinka

This paper describes the effect of cyclic elevated temperature loading on refractory slabs made from high performance, fibre reinforced cement composite. Slabs were produced from aluminous cement-based composites, reinforced by different dosages of basalt fibres. The composite investigated in this study had self-compacting characteristics. The slabs used were exposed to different thermal loading – 600 °C, 1000 °C, six times applied 600 °C and 1000 °C. Then, flexural strength was investigated in all groups of slabs, including group reference slabs with no thermal loading. The results show that the appropriate combination of aluminous cement, natural basalt aggregate, fine filler and basalt fibres in dosage 1.00% of volume is able to successfully resist to cyclic temperature loading. Tensile strength in bending of these slabs (after cyclic temperature loading at 600 °C) achieved 6.0 MPa. It was demonstrated that it is possible to use this composite for high extensive conditions in real industrial conditions.


2015 ◽  
Vol 732 ◽  
pp. 377-380 ◽  
Author(s):  
Jindřich Fornůsek ◽  
Michal Tvarog

This paper deals about behavior of fiber reinforced cement composite in dependence on the casting direction. Almost fifty concrete prisms of size 400 x 100 x 100 mm were cast; half of these were fiber reinforced concrete (FRC) and the other half was ultra-high performance fiber reinforced concrete (UHPFRC). Approximately one half of both mixtures was cast in horizontal direction and the other half vertically. It was found that the specific fracture energy of horizontally cast prisms was approximately 4,5 times larger for both materials than the vertically cast ones. Ultimate loads of FRC were very similar for both casting directions. Peak loads of the horizontally cast UHPFRC prisms were approximately 3 times larger than the vertically cast ones. This research confirmed that there is significant influence of the casting direction on the fiber reinforced concrete characteristics.


2016 ◽  
Vol 54 (5) ◽  
pp. 565-571
Author(s):  
T. Kanda ◽  
N. Sakata ◽  
D. Hayashi ◽  
M. Hashimoto

Author(s):  
Andina Sprince ◽  
Leonids Pakrastinsh

The aim of this paper was to study the behaviour of new high-performance fibre-reinforced cement composite materials (FRCC) that are reinforced with polyvinyl alcohol (PVA) fibres. The shrinkage deformations at early age, the compressive strength and modulus of elasticity of the new compositions had been determined. Test results shows that the addition of PVA fiber 1.10% and 0.55% by weight of the cement has negligible influence on concrete drying shrinkage, however, it is affect the concrete plastic and autogenous shrinkage. The results of the experiments permitted the prediction of long-term deformations of the concrete. Wider use of this material permit the construction of sustainable next generation structures with thin walls and large spans that cannot be built using the traditional concrete.


Sign in / Sign up

Export Citation Format

Share Document