aluminous cement
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
V.V. Pischanskaya ◽  
◽  
M.V. Hubynskyi ◽  
A.Yu. Usenko ◽  
A.V. Sybir ◽  
...  

The article presents the results of the study aimed at establishing the main process parameters of the preparation of an electrically conductive composite material containing silicon carbide, graphite, aluminous cement and sodium silicate. This composite material can be used as a heating element in heat accumulators for the operating temperature range of 600–10000C. The effects of the amount of sodium silicate within the range of 12–18 wt.% and the compacting pressure within the range of 40-70 N / mm2 on the changes in the properties of the samples after drying were investigated. It was established that the mechanical strength of the samples of 34.2 N mm–2 and 33.4 N mm–2 can be achieved at the compacting pressure of 60 N mm–2 and 50 N mm–2 and the sodium silicate content of 14 wt.% and 16 wt.%, respectively. It was shown that a porous microstructure of the composite is formed in the course of samples annealing at the temperatures of 600–10000C due to physicochemical processes of transformations of sodium silicate and its interaction with aluminous cement; this porous microstructure is characterized by open porosity in the range of 23.14–25.11% and mechanical strength in the range of 33.2–32.0 N mm–2. The fabricated composite material after its annealing at 10000C shows a low electrical resistivity of 0.06710–2–0.01410–2 Ohmm at the electric current of 28–94 A and the voltage of 19.2–13.2 V.


2020 ◽  
Vol 8 (5) ◽  
pp. 2045-2049

This study has been performed to evaluate the performance of the industrial by-product dealuminated kaolin (DK) as geopolymer paste in production a refractory concrete. The paper study the thermal and mechanical properties of concrete mixtures containing crushed refractory brick as combined aggregate and geopolymer paste produced from the blend of 10%, 20% and 30% of DK, ordinary Portland cement (OPC), solution of sodium hydroxide and sodium silicate as alkaline activator. These concrete mixtures were tested for workability, shrinkage at 400,800 and 1200 °C, thermal shock resistance at temperature of 950 °C, Cold crushing strength, tensile strength, and elastic modulus. The results of these mixtures compared with the results of concrete mixtures containing 100% OPC and 100% aluminous cement (AC) .The results show that the thermal and mechanical properties of geopolymer concrete produced by dealuminated kaolin (DK) are enhanced. Also, it is found that mixture contains 20% of DK appears to be the optimal geopolymer concrete mixture.


2020 ◽  
Vol 975 ◽  
pp. 147-152
Author(s):  
Marcel Jogl ◽  
Pavel Reiterman

The paper presents the impact of doses of an air-entraining additive on the mechanical properties of a composite based on aluminous cement. The presented data have been selected from the authors’ most recent research, which supports an economic development of a lightweight composite with the ability to withstand elevated temperatures of up to 1000 °C. The interest in the behaviour of concrete at high temperatures mainly results from the many cases of fires taking place in buildings, high-rises, tunnels, and drilling platform structures. Operation at high temperatures is also of fundamental importance to many major sectors of industry, including material production and processing, chemical engineering, power generation and more. Concrete has a great intrinsic behaviour when exposed to fire, especially when compared to other building materials. However, its fire resistance should not be taken for granted and proper structural fire protection is certainly necessary, e.g. in the form of high-temperature barriers. For the purposes of this experiment, the specimens were composed of cement paste and an air-entraining additive dosage between 2 – 10 % by weight of the cement dose. The properties of investigated specimens, dried at a temperature of 105 °C, were compared with each other. Values of compressive strength, flexural strength, and bulk density are measured in this work. The purpose was to evaluate the effects of the air-entraining agent on the workability of a fresh mixture, its bulk density, and mechanical properties after drying. In the case of a mixture with added short basalt fibres, the effects after high thermal loading were also evaluated. The proposed composites with air-entraining additive over 8 % shown the values of bulk density below 1800 kg/m3, along with the satisfactory strength results.


Author(s):  
Elena Valentina Stoian ◽  
Dan Nicolae Ungureanu ◽  
Florin Toma ◽  
Alexandru Gabriel Colţa ◽  
Daniel Anculescu ◽  
...  

AbstractThe paper shows data related to coexistence of various binding systems, which could be present during the hardening of special concretes. It is taken into account the Ultra Low Aluminous Cement Concretes additivated with different materials (phosphates and mineral ultra dispersed powders - Condensed Silica Fume, Hydrated Alumina etc). In correlation to the pH-value, these substances can favour the forming of new binding systems besides the hydraulic binder (which is not important in this case). The new system is the coagulation binding form. The coagulation binding system has a very important role in the advanced compactness and in the increasing mechanical strengths of concrete structures.


2019 ◽  
Vol 18 (2) ◽  
pp. 121-126
Author(s):  
S. N. Leonovich ◽  
D. V. Sviridov ◽  
A. L. Belanovich ◽  
V. P. Savenko ◽  
S. A. Karpushenkov

The composition of dry mix on the basis of two-component cementing agent (aluminous cement and clay of the “Kustikha” field), mineral additives (a metakaolin, the RSAM sulfoaluminate modifier, waste of basalt fiber), Ufapore foamer and the accelerating and plasticizing “Citrate-T” additive is developed. When mixing “Citrate-T” additive with water at Water/Solid = 0.45–0.70, the subsequent mechanical binder and hardening of a foam mass heat-resistant foam concretes with a density of 300–650 kg/m3 are formed (depending on Water/Solid value). Foam concretes have strength on compression of 0.2–2.5 MPa before warming up when their initial strength depends on processes of hydration curing of aluminous cement that provides fixation of their porous structure. After annealing at 1000 °C foam concretes have final strength of 0.3–3.2 MPa due to processes of solid-phase agglomeration of clay with other components of dry mix at their heating. Foam concretes after annealing unlike foam concretes on the basis of a Portland cement and aluminous cement have big strength. Introduction of the accelerating and plasticizing “Citrate-T” additive into composition of the dry mix leads to an increase of rheological properties in expanded foam mass and time reduction of its drying and curing. It has been established that an essential role is played by the relation Water/Solid: at increase in the relation Water/Solid (with 0.45 to 0.70) occurs increase in volume of foam mass after a mechanical binder, and also heterogeneity of pores and their sizes increases that leads to reduction of density of foam concretes and strength on compression.


2019 ◽  
Vol 11 (6) ◽  
pp. 1782 ◽  
Author(s):  
Jacek Szulej ◽  
Paweł Ogrodnik ◽  
Beata Klimek

The article presents the results of research on the use of ceramic ware waste as aggregate in concrete production. Four concrete mixtures with aluminous cement were prepared, each with a different admixture of clinoptilolite. The only used aggregate was crushed waste ceramic sanitary ware obtained from a Polish sanitary fixture production plant. As part of the studies, a compressive test of cubic samples at different curing times ranging from 7 to 90 days was performed. Prior to the preparation of the samples, a sieve analysis and an elemental analysis of the obtained aggregate were conducted. In the framework of the testing, the bimodal distribution of clinoptilolite grains was determined, as well as its chemical composition. The conducted compressive tests demonstrated high strength of concrete containing ceramic aggregate and aluminous cement with an addition of clinoptilolite. In order to determine the impact that adding zeolite exerts on the phase composition and the structure of concrete samples, an analysis of the phase composition (XRD) and scanning electron microscopy examination (SEM) were performed. Furthermore, tests of abrasion, water penetration under pressure and frost resistance were conducted, determining particular properties of the designed mixtures. The abrasion tests have confirmed that the mixtures are highly abrasion-resistant and can be used as a topcoat concrete layer. The conducted tests of selected properties have confirmed the possibility of using waste ceramic cullet and a mineral addition of clinoptilolite in concrete production.


Author(s):  
Nicolae Angelescu ◽  
Dan Nicolae Ungureanu ◽  
Vasile Bratu

Abstract The current work is intended to explain the role of some organic admixtures on the hardened structure of refractory concretes with aluminous cement. The influences on the mechanical-structural properties in the normal hardening but in the heating conditions at different temperatures are emphasized, also. These are due to the influence on the hydration process (i.e. the kind of the neoformations and degree of hydration) and implicitly on the size and distribution of structural pores.


2018 ◽  
Vol 45 ◽  
pp. 00116
Author(s):  
Jacek Szulej ◽  
Paweł Ogrodnik

In the paper it was decided to recognize the material characteristics of concrete based on ceramic aggregate, aluminous cement with the addition of zeolite (5%, 10%, 15%) and air entraining admixture. Aggregate crushed to 2 fractions was used for designing the concrete mix : 0-4 mm, and 4-8 mm. The research involved the use of clinoptilolite derived from the zeolite tuff deposit at Sokyrnytsya (Transcarpathia, Ukraine). The dominant component in the zeolite is clinoptilolite in an amount of about 75%. The research carried out by the authors showed that the addition of zeolite, among others, increases the compressive strength of concrete, significantly improves the frost resistance, which in the case of using only aluminous cement is very low. The obtained results confirm the possibility of using the above-mentioned components, which improve the concrete material properties and are environmentally friendly.


2018 ◽  
Vol 57 ◽  
pp. 02007
Author(s):  
Paweł Ogrodnik ◽  
Jacek Szulej

The article presents the results of bond tests of B500SP structural steel to concretes subjected to thermal stress. Concretes were designed purely on the basis on waste aggregate made of soft clay pottery with using two types of cements: Portland CEM 32.5R and aluminous cement Górkal 70. In the research was used the method of direct pulling the steel rod out of the concrete cover (Pullout Test). For the tests were prepared four types of concretes: two bases of aluminous cement and two on Portland cement without additions. In the remaining mixtures containing the additive in the form of clinoptilolite, the method of simple weight replacement of the selected type of cement with clinoptilolite in the amount of 10% was used. Mineral puzzolana additives are intended to modify the phase composition of hardened cement slurry towards reducing the portlandite and changing the CaO/SiO2 ratio in the C-S-H phase. The results of the tests confirmed that the bond of the selected steel type to concrete on the recycle aggregate does not differ from the results achieved with natural aggregate. It was also confirmed that addition of clinoptilolite to concrete with Portland cement has beneficial effect when it is subjected to thermal stress.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ondřej Holčapek ◽  
Jaroslava Kot'átková ◽  
Pavel Reiterman

The paper introduces the development process of fiber-reinforced composite with increased resistance to elevated temperatures, which could be additionally increased by the hydrothermal curing. However, production of these composites is extremely energy intensive, and that is why the process of the design reflects environmental aspects by incorporation of waste material—fine ceramic powder applied as cement replacement. Studied composite materials consisted of the basalt aggregate, ceramic fibers applied up to 8% by volume, calcium-aluminous cement (CAC), ceramic powder up to 25% by mass (by 5%) as cement replacement, plasticizer, and water. All studied mixtures were subjected to thermal loading on three thermal levels: 105°C, 600°C, and 1000°C. Experimental assessment was performed in terms of both initial and residual material properties; flow test of fresh mixtures, bulk density, compressive strength, flexural strength, fracture energy, and dynamic modulus of elasticity were investigated to find out an optimal dosage of ceramic fibers. Resulting set of composites containing 4% of ceramic fibers with various modifications by ceramic powder was cured under specific hydrothermal condition and again subjected to elevated temperatures. One of the most valuable benefits of additional hydrothermal curing of the composites lies in the higher residual mechanical properties, what allows successful utilization of cured composite as a thermal barrier in civil engineering. Mixtures containing ceramic powder as cement substitute exhibited after hydrothermal curing increase of residual flexural strength about 35%; on the other hand, pure mixture exhibited increase up to 10% even higher absolute values.


Sign in / Sign up

Export Citation Format

Share Document