scholarly journals Bridging Concrete and Abstract Syntax of Web Rule Languages

Author(s):  
Milan Milanović ◽  
Dragan Gašević ◽  
Adrian Giurca ◽  
Gerd Wagner ◽  
Sergey Lukichev ◽  
...  
Author(s):  
Medhi Dastani

Rule markup languages will be the vehicle for using rules on the Web and in other distributed systems. They allow publishing, deploying, executing and communicating rules in a network. They may also play the role of a lingua franca for exchanging rules between different systems and tools. In a narrow sense, a rule markup language is a concrete (XML-based) rule syntax for the Web. In a broader sense, it should have an abstract syntax as a common basis for defining various concrete languages addressing different consumers. The main purposes of a rule markup language are to permit the publication, interchange and reuse of rules. This chapter introduces important requirements and design issues for general Web rule languages to fulfill these tasks. Characteristics of several important general standardization or standards-proposing efforts for (XML-based) rule markup languages including W3C RIF, RuleML, R2ML, SWRL as well as (human-readable) Semantic Web rule languages such as TRIPLE, N3, Jena, and Prova are discussed with respect to these identified issues.


Author(s):  
Adrian Paschke ◽  
Harold Boley

Rule markup languages will be the vehicle for using rules on the Web and in other distributed systems. They allow publishing, deploying, executing and communicating rules in a network. They may also play the role of a lingua franca for exchanging rules between different systems and tools. In a narrow sense, a rule markup language is a concrete (XML-based) rule syntax for the Web. In a broader sense, it should have an abstract syntax as a common basis for defining various concrete languages addressing different consumers. The main purposes of a rule markup language are to permit the publication, interchange and reuse of rules. This chapter introduces important requirements and design issues for general Web rule languages to fulfill these tasks. Characteristics of several important general standardization or standards-proposing efforts for (XML-based) rule markup languages including W3C RIF, RuleML, R2ML, SWRL as well as (human-readable) Semantic Web rule languages such as TRIPLE, N3, Jena, and Prova are discussed with respect to these identified issues.


2009 ◽  
Vol 6 (2) ◽  
pp. 47-85 ◽  
Author(s):  
Milan Milanovic ◽  
Dragan Gasevic ◽  
Adrian Giurca ◽  
Gerd Wagner ◽  
Sergey Lukichev ◽  
...  

This paper presents a solution to bridging the abstract and concrete syntax of a Web rule languages by using model transformations. Current specifications of Web rule languages such as Semantic Web Rule Language (SWRL) or RuleML define their abstract syntax (e.g., metamodel) and concrete syntax (e.g., XML schema) separately. Although the recent research in the area of Model-Driven Engineering (MDE) demonstrates that such a separation of two types of syntax is a good practice (due to the complexity of languages), one should also have tools that check validity of rules written in a concrete syntax with respect to the abstract syntax of the rule language. In this study, we use the REWERSE I1 Rule Markup Language (R2ML), SWRL, and Object Constraint Language (OCL), whose abstract syntax is defined by using metamodeling, while their textual concrete syntax is defined by using either XML/RDF schema or Extended Backus-Naur Form (EBNF) syntax. We bridge this gap by a bi-directional transformation defined in a model transformation language (ATLAS Transformation Language, ATL). This transformation allowed us to discover a number of issues in both web rule language metamodels and their corresponding concrete syntax, and thus make them fully compatible. This solution also enables for sharing web rules between different web rule languages.


2011 ◽  
pp. 623-647 ◽  
Author(s):  
Adrian Paschke ◽  
Harold Boley

Rule markup languages will be the vehicle for using rules on the Web and in other distributed systems. They allow publishing, deploying, executing and communicating rules in a network. They may also play the role of a lingua franca for exchanging rules between different systems and tools. In a narrow sense, a rule markup language is a concrete (XMLbased) rule syntax for the Web. In a broader sense, it should have an abstract syntax as a common basis for defining various concrete languages addressing different consumers. The main purposes of a rule markup language are to permit the publication, interchange and reuse of rules. This chapter introduces important requirements and design issues for general Web rule languages to fulfill these tasks. Characteristics of several important general standardization or standards-proposing efforts for (XML-based) rule markup languages including W3C RIF, RuleML, R2ML, SWRL as well as (human-readable) Semantic Web rule languages such as TRIPLE, N3, Jena, and Prova are discussed with respect to these identified issues.


Author(s):  
Jean-Philippe Bernardy ◽  
Stergios Chatzikyriakidis ◽  
Aleksandre Maskharashvili

AbstractIn this paper, we propose a framework capable of dealing with anaphora and ellipsis which is both general and algorithmic. This generality is ensured by the compination of two general ideas. First, we use a dynamic semantics which reperent effects using a monad structure. Second we treat scopes flexibly, extending them as needed. We additionally implement this framework as an algorithm which translates abstract syntax to logical formulas. We argue that this framework can provide a unified account of a large number of anaphoric phenomena. Specifically, we show its effectiveness in dealing with pronominal and VP-anaphora, strict and lazy pronouns, lazy identity, bound variable anaphora, e-type pronouns, and cataphora. This means that in particular we can handle complex cases like Bach–Peters sentences, which require an account dealing simultaneously with several phenomena. We use Haskell as a meta-language to present the theory, which also consitutes an implementation of all the phenomena discussed in the paper. To demonstrate coverage, we propose a test suite that can be used to evaluate computational approaches to anaphora.


2020 ◽  
Vol 176 (3-4) ◽  
pp. 349-384
Author(s):  
Domenico Cantone ◽  
Marianna Nicolosi-Asmundo ◽  
Daniele Francesco Santamaria

In this paper we consider the most common TBox and ABox reasoning services for the description logic 𝒟ℒ〈4LQSR,x〉(D) ( 𝒟 ℒ D 4,× , for short) and prove their decidability via a reduction to the satisfiability problem for the set-theoretic fragment 4LQSR. 𝒟 ℒ D 4,× is a very expressive description logic. It combines the high scalability and efficiency of rule languages such as the SemanticWeb Rule Language (SWRL) with the expressivity of description logics. In fact, among other features, it supports Boolean operations on concepts and roles, role constructs such as the product of concepts and role chains on the left-hand side of inclusion axioms, role properties such as transitivity, symmetry, reflexivity, and irreflexivity, and data types. We further provide a KE-tableau-based procedure that allows one to reason on the main TBox and ABox reasoning tasks for the description logic 𝒟 ℒ D 4,× . Our algorithm is based on a variant of the KE-tableau system for sets of universally quantified clauses, where the KE-elimination rule is generalized in such a way as to incorporate the γ-rule. The novel system, called KEγ-tableau, turns out to be an improvement of the system introduced in [1] and of standard first-order KE-tableaux [2]. Suitable benchmark test sets executed on C++ implementations of the three mentioned systems show that in several cases the performances of the KEγ-tableau-based reasoner are up to about 400% better than the ones of the other two systems.


Sign in / Sign up

Export Citation Format

Share Document