scholarly journals Modeling Chandra X-ray Observations of Galaxy Clusters using Cosmological Simulations

Author(s):  
D. Nagai ◽  
A. V. Kravtsov ◽  
A. Vikhlinin
2020 ◽  
Vol 644 ◽  
pp. A126
Author(s):  
C. Tchernin ◽  
E. T. Lau ◽  
S. Stapelberg ◽  
D. Hug ◽  
M. Bartelmann

Context. Biases in mass measurements of galaxy clusters are one of the major limiting systematics in constraining cosmology with clusters. Aims. We aim to demonstrate that the systematics associated with cluster gravitational potentials are smaller than the hydrostatic mass bias and that cluster potentials could therefore be a good alternative to cluster masses in cosmological studies. Methods. Using cosmological simulations of galaxy clusters, we compute the biases in the hydrostatic mass (HE mass) and those in the gravitational potential, reconstructed from measurements at X-ray and millimeter wavelengths. In particular, we investigate the effects of the presence of substructures and of nonthermal pressure support on both the HE mass and the reconstructed potential. Results. We find that the bias in the reconstructed potential (6%) is less than that of the HE mass (13%) and that the scatter in the reconstructed potential decreases by ∼35% with respect to that in the HE mass. Conclusions. This study shows that characterizing galaxy clusters by their gravitational potential is a promising alternative to using cluster masses in cluster cosmology.


2019 ◽  
Vol 488 (3) ◽  
pp. 3646-3662 ◽  
Author(s):  
Andrew Robertson ◽  
David Harvey ◽  
Richard Massey ◽  
Vincent Eke ◽  
Ian G McCarthy ◽  
...  

ABSTRACT We present bahamas-SIDM, the first large-volume, $(400 \, h^{-1} \mathrm{\, Mpc})^{3}$, cosmological simulations including both self-interacting dark matter (SIDM) and baryonic physics. These simulations are important for two primary reasons: (1) they include the effects of baryons on the dark matter distribution and (2) the baryon particles can be used to make mock observables that can be compared directly with observations. As is well known, SIDM haloes are systematically less dense in their centres, and rounder, than CDM haloes. Here, we find that that these changes are not reflected in the distribution of gas or stars within galaxy clusters, or in their X-ray luminosities. However, gravitational lensing observables can discriminate between DM models, and we present a menu of tests that future surveys could use to measure the SIDM interaction strength. We ray-trace our simulated galaxy clusters to produce strong lensing maps. Including baryons boosts the lensing strength of clusters that produce no critical curves in SIDM-only simulations. Comparing the Einstein radii of our simulated clusters with those observed in the CLASH survey, we find that at velocities around $1000 \mathrm{\, km \, s^{-1}}$ an SIDM cross-section of $\sigma /m \gtrsim 1 \, \mathrm{cm^2 \, g^{-1}}$ is likely incompatible with observed cluster lensing.


2007 ◽  
Vol 655 (1) ◽  
pp. 98-108 ◽  
Author(s):  
Daisuke Nagai ◽  
Alexey Vikhlinin ◽  
Andrey V. Kravtsov

2007 ◽  
Vol 472 (3) ◽  
pp. 739-748 ◽  
Author(s):  
M. Branchesi ◽  
I. M. Gioia ◽  
C. Fanti ◽  
R. Fanti
Keyword(s):  

2009 ◽  
Vol 697 (2) ◽  
pp. 1597-1620 ◽  
Author(s):  
Jason W. Henning ◽  
Brennan Gantner ◽  
Jack O. Burns ◽  
Eric J. Hallman

2014 ◽  
Vol 439 (2) ◽  
pp. 1796-1806 ◽  
Author(s):  
Q. Daniel Wang ◽  
Stephen Walker
Keyword(s):  

2018 ◽  
Vol 611 ◽  
pp. A50 ◽  
Author(s):  
Konstantinos Migkas ◽  
Thomas H. Reiprich

We introduce a new test to study the cosmological principle with galaxy clusters. Galaxy clusters exhibit a tight correlation between the luminosity and temperature of the X-ray-emitting intracluster medium. While the luminosity measurement depends on cosmological parameters through the luminosity distance, the temperature determination is cosmology-independent. We exploit this property to test the isotropy of the luminosity distance over the full extragalactic sky, through the normalization a of the LX–T scaling relation and the cosmological parameters Ωm and H0. To this end, we use two almost independent galaxy cluster samples: the ASCA Cluster Catalog (ACC) and the XMM Cluster Survey (XCS-DR1). Interestingly enough, these two samples appear to have the same pattern for a with respect to the Galactic longitude. More specifically, we identify one sky region within l ~ (−15°, 90°) (Group A) that shares very different best-fit values for the normalization of the LX–T relation for both ACC and XCS-DR1 samples. We use the Bootstrap and Jackknife methods to assess the statistical significance of these results. We find the deviation of Group A, compared to the rest of the sky in terms of a, to be ~2.7σ for ACC and ~3.1σ for XCS-DR1. This tension is not significantly relieved after excluding possible outliers and is not attributed to different redshift (z), temperature (T), or distributions of observable uncertainties. Moreover, a redshift conversion to the cosmic microwave background (CMB) frame does not have an important impact on our results. Using also the HIFLUGCS sample, we show that a possible excess of cool-core clusters in this region, is not able to explain the obtained deviations. Furthermore, we tested for a dependence of the results on supercluster environment, where the fraction of disturbed clusters might be enhanced, possibly affecting the LX–T relation. We indeed find a trend in the XCS-DR1 sample for supercluster members to be underluminous compared to field clusters. However, the fraction of supercluster members is similar in the different sky regions, so this cannot explain the observed differences, either. Constraining Ωm and H0 via the redshift evolution of LX–T and the luminosity distance via the flux–luminosity conversion, we obtain approximately the same deviation amplitudes as for a. It is interesting that the general observed behavior of Ωm for the sky regions that coincide with the CMB dipole is similar to what was found with other cosmological probes such as supernovae Ia. The reason for this behavior remains to be identified.


Sign in / Sign up

Export Citation Format

Share Document