mass bias
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 24)

H-INDEX

24
(FIVE YEARS 4)

Author(s):  
Evelyn Frères ◽  
Dominique Weis ◽  
Karla Newman ◽  
Marghaleray Amini ◽  
Kathy Gordon
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sung-Gyun Yim ◽  
Min-Ji Jung ◽  
Youn-Joong Jeong ◽  
Yeongmin Kim ◽  
Albert Chang-sik Cheong

Abstract Background One of the most critical issues concerning in situ mass spectrometry lies in accounting for elements and molecules that overlap target isotopes of analytical interest in a sample. This study traced the instrumental mass fractionation of Rb and Sr isotopes during laser ablation-multicollector-inductively coupled plasma mass spectrometry (LA-MC-ICPMS) to obtain reliable 87Sr/86Sr ratios for high-Rb/Sr samples. Findings In the LA-MC-ICPMS analysis, Kr interferences were corrected using Ar and He gas blanks measured without ablating material. Contributions from doubly charged Er and Yb ions were corrected using the intensities of half masses and isotopic compositions reported in the literature. After Kr correction, the calculated 166Er2+ intensity of NIST SRM 610 approached the measured intensity at mass 83, and the 173Yb2+/171Yb2+ ratio agreed with the recommended value within error ranges. Kr- and REE2+-stripped peak intensities were further corrected for Rb interference. Use of the Sr mass bias factor for the calculation of measured 87Rb/85Rb yielded 87Sr/86Sr ratios consistent with the recommended and expected values for low-Rb/Sr materials, such as NIST SRM 616, modern shark teeth, and plagioclase collected from Jeju Island, but failed to account for the 87Rb interference from high-Rb/Sr materials including NIST SRM 610 and SRM 612. We calculated in situ mass bias factor of Rb from the known 87Sr/86Sr ratios of the standards and observed a correlation between Rb and Sr mass fractionation, which allowed inference of the Rb bias from the standard run. Reliable 87Sr/86Sr and 85Rb/86Sr ratios were obtained for SRM 610 and SRM 612 using the inferred mass bias factor of Rb calculated by the standard bracketing method. Conclusions This study revealed that Rb and Sr isotopes behave differently during LA-MC-ICPMS and suggests the potential usefulness of the standard bracketing method for measuring the Rb–Sr isotopic compositions of high-Rb/Sr materials.


Author(s):  
Giulia Gianfagna ◽  
Marco De Petris ◽  
Gustavo Yepes ◽  
Federico De Luca ◽  
Federico Sembolini ◽  
...  

Abstract Clusters of galaxies are useful tools to constrain cosmological parameters, only if their masses can be correctly inferred from observations. In particular, X-ray and Sunyaev-Zeldovich (SZ) effect observations can be used to derive masses within the framework of the hydrostatic equilibrium. Therefore, it is crucial to have a good control of the possible mass biases that can be introduced when this hypothesis is not valid. In this work, we analyzed a set of 260 synthetic clusters from the MUSIC simulation project, at redshifts 0 ≤ z ≤ 0.82. We estimate the hydrostatic mass of the MUSIC clusters from X-ray only (temperature and density) and from X-ray and SZ (density and pressure). Then, we compare them with the true 3D dynamical mass. The biases are of the order of 20%. We find that using the temperature instead of the pressure leads to a smaller bias, although the two values are compatible within 1σ. Non-thermal contributions to the total pressure support, arising from bulk motion and turbulence of the gas, are also computed and show that they are sufficient to account for this bias. We also present a study of the correlation between the mass bias and the dynamical state of the clusters. A clear correlation is shown between the relaxation state of the clusters and the bias factor. We applied the same analysis on a subsample of 32 objects, already selected for supporting the NIKA2 SZ Large Program.


Author(s):  
Øyvind Christiansen ◽  
Jose Beltran Jimenez ◽  
David Fonseca Mota

Author(s):  
Lei Xu ◽  
Wen Zhang ◽  
Tao Luo ◽  
Jin-Hui Yang ◽  
Zhaochu Hu

High precise and accurate measurements of Fe isotope ratios for fourteen reference materials from the USGS, MPI-DING and CGSG were successfully carried out using a developed analytical technique by fs...


2020 ◽  
Vol 644 ◽  
pp. A126
Author(s):  
C. Tchernin ◽  
E. T. Lau ◽  
S. Stapelberg ◽  
D. Hug ◽  
M. Bartelmann

Context. Biases in mass measurements of galaxy clusters are one of the major limiting systematics in constraining cosmology with clusters. Aims. We aim to demonstrate that the systematics associated with cluster gravitational potentials are smaller than the hydrostatic mass bias and that cluster potentials could therefore be a good alternative to cluster masses in cosmological studies. Methods. Using cosmological simulations of galaxy clusters, we compute the biases in the hydrostatic mass (HE mass) and those in the gravitational potential, reconstructed from measurements at X-ray and millimeter wavelengths. In particular, we investigate the effects of the presence of substructures and of nonthermal pressure support on both the HE mass and the reconstructed potential. Results. We find that the bias in the reconstructed potential (6%) is less than that of the HE mass (13%) and that the scatter in the reconstructed potential decreases by ∼35% with respect to that in the HE mass. Conclusions. This study shows that characterizing galaxy clusters by their gravitational potential is a promising alternative to using cluster masses in cluster cosmology.


2020 ◽  
Vol 644 ◽  
pp. A78
Author(s):  
L. Lovisari ◽  
S. Ettori ◽  
M. Sereno ◽  
G. Schellenberger ◽  
W. R. Forman ◽  
...  

Context. Total mass is arguably the most fundamental property for cosmological studies with galaxy clusters. The individual cluster masses can be obtained with different methods, each with its own biases and limitations. Systematic differences in mass measurements can strongly impact the determination of the hydrostatic bias and of the mass-observable relations, key requirements of many cluster abundance studies. Aims. We investigate the present differences in the mass estimates obtained through independent X-ray, weak-lensing, and dynamical studies using a large subsample of the Planck-ESZ clusters. We also discuss the implications for mass bias analyses. Methods. After assessing the systematic differences in the X-ray-derived masses reported by distinct groups, we examine the mass estimates obtained with independent methods and quantify the differences as the mean ratio 1-b = MHE/MWL, dyn, where HE refers to hydrostatic masses obtained from X-ray observations, WL refers to the results of weak-lensing measurements, and dyn refers to the mass estimates either from velocity dispersion or from the caustic technique. So defined, the 1-b parameter includes all possible astrophysical, observational, and methodological biases in one single value. Results. Recent X-ray masses reported by independent groups show average differences smaller than ∼10%, posing a strong limit on the systematics that can be ascribed to the differences in the X-ray analysis when studying the hydrostatic bias. The mean ratio between our X-ray masses and the weak-lensing masses in the LC2-single catalog is 1-b = 0.74 ± 0.06, which corresponds to a mass bias of 26 ± 6%, a value insufficient to reconcile the Planck cluster abundance and cosmic microwave background results. However, the mean mass ratios inferred from the WL masses of different projects vary by a large amount, with APEX-SZ showing a bias consistent with zero (1-b = 1.02 ± 0.12), LoCuSS and CCCP/MENeaCS showing a significant difference (1-b = 0.76 ± 0.09 and 1-b = 0.77 ± 0.10, respectively), and WtG pointing to the largest deviation (1-b = 0.61 ± 0.12), which would substantially reduce the tension between the Planck results. Because of small differences between our M − YX relation and the one used by the Planck collaboration, our X-ray masses are on average 7% lower (4% at the same physical radius) than the Planck masses and can further reduce the required bias. At odds with the WL results, the dynamical mass measurements show better agreement with the X-ray hydrostatic masses, although there are significant differences when relaxed or disturbed clusters are used. However, the comparison is currently limited by the small sample sizes. Conclisions. The systematic differences between total masses obtained with recent independent X-ray analyses are smaller than those found in previous studies. This shifts the focus to WL and dynamical studies for a better convergence of the level of mass bias. However, the ratios obtained using different mass estimators suggest that there are still systematics that are not accounted for in all the techniques used to recover cluster masses. This prevents the determination of firm constraints on the level of hydrostatic mass bias in galaxy clusters.


2020 ◽  
Vol 497 (2) ◽  
pp. 1332-1347 ◽  
Author(s):  
Boris Bolliet ◽  
Thejs Brinckmann ◽  
Jens Chluba ◽  
Julien Lesgourgues

ABSTRACT We consistently include the effect of massive neutrinos in the thermal Sunyaev Zeldovich (SZ) power spectrum and cluster counts analyses, highlighting subtle dependencies on the total neutrino mass and data combination. In particular, we find that using the transfer functions for cold dark matter (CDM) + baryons in the computation of the halo mass function, instead of the transfer functions including neutrino perturbations, as prescribed in recent work, yields an ≈0.25 per cent downward shift of the σ8 constraint from tSZ power spectrum data, with a fiducial neutrino mass Σmν = 0.06 eV. In ΛCDM, with an X-ray mass bias corresponding to the expected hydrostatic mass bias, i.e. (1 − b) ≃ 0.8, our constraints from Planck SZ data are consistent with the latest results from SPT, DES-Y1, and KiDS+VIKING-450. In νΛCDM, our joint analyses of Planck SZ with Planck 2015 primary CMB yield a small improvement on the total neutrino mass bound compared to the Planck 2015 primary CMB constraint, as well as (1 − b) = 0.64 ± 0.04 (68 per cent CL). For forecasts, we find that competitive neutrino mass measurements using cosmic variance limited SZ power spectrum require masking the heaviest clusters and probing the small-scale SZ power spectrum up to ℓmax ≈ 104. Although this is challenging, we find that SZ power spectrum can realistically be used to tightly constrain intracluster medium properties: we forecast a 2 per cent determination of the X-ray mass bias by combining CMB-S4 and our mock SZ power spectrum with ℓmax = 103.


Sign in / Sign up

Export Citation Format

Share Document