A Scalable Multilevel Algorithm for Graph Clustering and Community Structure Detection

Author(s):  
Hristo N. Djidjev
2019 ◽  
Vol 33 (13) ◽  
pp. 1950164
Author(s):  
Qing-Feng Dong ◽  
Dian-Kun Chen ◽  
Ting Wang

At present, the detection of urban community structures is mainly based on existing administrative divisions, and is performed using qualitative methods. The lack of quantitative methods makes it difficult to judge the rationality of urban community divisions. In this study, we used complex network association mining methods to detect a city community structure by using the Origin-Destinations (OD) at traffic analysis zone (TAZ) level, and successively assigned all the TAZs into different communities. Based on the community results, we calculated the community core degree of each TAZ within every community, and then calculated the Traffic Core Degree and Location Core Degree indicators of the community based on OD passenger flow and spatial location relationship between communities. Finally, we analyzed the correlation among three indicators to ensure the rationality of the community structure. We used the city of Zhengzhou in 2016 as an example case study. For Zhengzhou, we detected a total of six communities. We found a relatively low correlation between Traffic Core Degree and Location Core Degree. Within each group, the correlation between community core degree and Traffic Core Degree was higher than that between community core degree and Location Core Degree, indicating that the urban community structure is more reasonably based on traffic characteristics. The development of a quantitative approach for determining reasonable city community structures has important implications for transportation planning and industrial layout.


2018 ◽  
Vol 9 (4) ◽  
pp. 52-70 ◽  
Author(s):  
Ameera Saleh Jaradat ◽  
Safa'a Bani Hamad

This article describes how parallel to the continuous growth of the Internet, which allows people to share and collaborate more, social networks have become more attractive as a research topic in many different disciplines. Community structures are established upon interactions between people. Detection of these communities has become a popular topic in computer science. How to detect the communities is of great importance for understanding the organization and function of networks. Community detection is considered a variant of the graph partitioning problem which is NP-hard. In this article, the Firefly algorithm is used as an optimization algorithm to solve the community detection problem by maximizing the modularity measure. Firefly algorithm is a new Nature-inspired heuristic algorithm that proved its good performance in a variety of applications. Experimental results obtained from tests on real-life networks demonstrate that the authors' algorithm successfully detects the community structure.


2009 ◽  
Vol 86 (2) ◽  
pp. 28004 ◽  
Author(s):  
Y. Sun ◽  
B. Danila ◽  
K. Josić ◽  
K. E. Bassler

2013 ◽  
Vol 8 (2) ◽  
Author(s):  
Xianghua Fu ◽  
Chao Wang ◽  
Zhiqiang Wang ◽  
Zhong Ming

Sign in / Sign up

Export Citation Format

Share Document