Community Structure Detection Using Firefly Algorithm

2018 ◽  
Vol 9 (4) ◽  
pp. 52-70 ◽  
Author(s):  
Ameera Saleh Jaradat ◽  
Safa'a Bani Hamad

This article describes how parallel to the continuous growth of the Internet, which allows people to share and collaborate more, social networks have become more attractive as a research topic in many different disciplines. Community structures are established upon interactions between people. Detection of these communities has become a popular topic in computer science. How to detect the communities is of great importance for understanding the organization and function of networks. Community detection is considered a variant of the graph partitioning problem which is NP-hard. In this article, the Firefly algorithm is used as an optimization algorithm to solve the community detection problem by maximizing the modularity measure. Firefly algorithm is a new Nature-inspired heuristic algorithm that proved its good performance in a variety of applications. Experimental results obtained from tests on real-life networks demonstrate that the authors' algorithm successfully detects the community structure.

Information ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Jinfang Sheng ◽  
Ben Lu ◽  
Bin Wang ◽  
Jie Hu ◽  
Kai Wang ◽  
...  

The research on complex networks is a hot topic in many fields, among which community detection is a complex and meaningful process, which plays an important role in researching the characteristics of complex networks. Community structure is a common feature in the network. Given a graph, the process of uncovering its community structure is called community detection. Many community detection algorithms from different perspectives have been proposed. Achieving stable and accurate community division is still a non-trivial task due to the difficulty of setting specific parameters, high randomness and lack of ground-truth information. In this paper, we explore a new decision-making method through real-life communication and propose a preferential decision model based on dynamic relationships applied to dynamic systems. We apply this model to the label propagation algorithm and present a Community Detection based on Preferential Decision Model, called CDPD. This model intuitively aims to reveal the topological structure and the hierarchical structure between networks. By analyzing the structural characteristics of complex networks and mining the tightness between nodes, the priority of neighbor nodes is chosen to perform the required preferential decision, and finally the information in the system reaches a stable state. In the experiments, through the comparison of eight comparison algorithms, we verified the performance of CDPD in real-world networks and synthetic networks. The results show that CDPD not only has better performance than most recent algorithms on most datasets, but it is also more suitable for many community networks with ambiguous structure, especially sparse networks.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1383
Author(s):  
Jinfang Sheng ◽  
Cheng Liu ◽  
Long Chen ◽  
Bin Wang ◽  
Junkai Zhang

With the rapid development of computer technology, the research on complex networks has attracted more and more attention. At present, the research directions of cloud computing, big data, internet of vehicles, and distributed systems with very high attention are all based on complex networks. Community structure detection is a very important and meaningful research hotspot in complex networks. It is a difficult task to quickly and accurately divide the community structure and run it on large-scale networks. In this paper, we put forward a new community detection approach based on internode attraction, named IACD. This algorithm starts from the perspective of the important nodes of the complex network and refers to the gravitational relationship between two objects in physics to represent the forces between nodes in the network dataset, and then perform community detection. Through experiments on a large number of real-world datasets and synthetic networks, it is shown that the IACD algorithm can quickly and accurately divide the community structure, and it is superior to some classic algorithms and recently proposed algorithms.


2012 ◽  
Vol 6-7 ◽  
pp. 985-990
Author(s):  
Yan Peng ◽  
Yan Min Li ◽  
Lan Huang ◽  
Long Ju Wu ◽  
Gui Shen Wang ◽  
...  

Community structure detection has great importance in finding the relationships of elements in complex networks. This paper presents a method of simultaneously taking into account the weak community structure definition and community subgraph density, based on the greedy strategy for community expansion. The results are compared with several previous methods on artificial networks and real world networks. And experimental results verify the feasibility and effectiveness of our approach.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Cong-Binh Nguyen ◽  
Seokhoon Yoon ◽  
Jangyoung Kim

We consider a community detection problem in a social network. A social network is composed of smaller communities; that is, a society can be partitioned into different social groups in which the members of the same group maintain stronger and denser social connections than individuals from different groups. In other words, people in the same community have substantially interdependent social characteristics, indicating that the community structure may facilitate understanding human interactions as well as individual’s behaviors. We detect the social groups within a network of mobile users by analyzing the Bluetooth-based encounter history from a real-life mobility dataset. Our community detection methodology focuses on designing similarity measurements that can reflect the degree of social connections between users by considering tempospatial aspects of human interactions, followed by clustering algorithms. We also present two evaluation methods for the proposed schemes. The first method relies on the natural properties of friendship, where the longevity, frequency, and regularity characteristics of human encounters are considered. The second is a movement-prediction-based method which is used to verify the social ties between users. The evaluation results show that the proposed schemes can achieve high performance in detecting the social community structure.


Author(s):  
Zhenhai Chang ◽  
Zhong-Yuan Zhang ◽  
Huimin Cheng ◽  
Chao Yan ◽  
Xianjun Yin

Community structure detection is one of the fundamental problems in complex network analysis towards understanding the topology structure and function of the network. Modularity is a criterion to evaluate the quality of community structures, and optimization of this quality function over the possible divisions of a network is a sensitive detection method for community structure. However, the direct application of this method is computationally costly. Nonnegative matrix factorization (NMF) is a widely used method for community detection. In this paper, we show that modularity maximization can be approximately reformulated under the framework of NMF with Frobenius norm, especially when [Formula: see text] is large. A new algorithm for detecting community structure is proposed based on the above finding. The new method is compared with four state-of-the-art methods on both synthetic and real-world networks, showing its higher clustering quality over the existing methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Heli Sun ◽  
Jianbin Huang ◽  
Xiang Zhong ◽  
Ke Liu ◽  
Jianhua Zou ◽  
...  

Community detection is an important task for mining the structure and function of complex networks. In this paper, a novel label propagation approach withα-degree neighborhood impact is proposed for efficiently and effectively detecting communities in networks. Firstly, we calculate the neighborhood impact of each node in a network within the scope of itsα-degree neighborhood network by using an iterative approach. To mitigate the problems of visiting order correlation and convergence difficulty when updating the node labels asynchronously, our method updates the labels in an ascending order on theα-degree neighborhood impact of all the nodes. Theα-degree neighborhood impact is also taken as the updating weight value, where the parameter impact scopeαcan be set to a positive integer. Experimental results from several real-world and synthetic networks show that our method can reveal the community structure in networks rapidly and accurately. The performance of our method is better than other label propagation based methods.


Sign in / Sign up

Export Citation Format

Share Document