Community structure detection in social networks based on dictionary learning

2011 ◽  
Vol 56 (7) ◽  
pp. 1-12 ◽  
Author(s):  
ZhongYuan Zhang
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Enrico Ubaldi ◽  
Raffaella Burioni ◽  
Vittorio Loreto ◽  
Francesca Tria

AbstractThe interactions among human beings represent the backbone of our societies. How people establish new connections and allocate their social interactions among them can reveal a lot of our social organisation. We leverage on a recent mathematical formalisation of the Adjacent Possible space to propose a microscopic model accounting for the growth and dynamics of social networks. At the individual’s level, our model correctly reproduces the rate at which people acquire new acquaintances as well as how they allocate their interactions among existing edges. On the macroscopic side, the model reproduces the key topological and dynamical features of social networks: the broad distribution of degree and activities, the average clustering coefficient and the community structure. The theory is born out in three diverse real-world social networks: the network of mentions between Twitter users, the network of co-authorship of the American Physical Society journals, and a mobile-phone-calls network.


2019 ◽  
Vol 33 (13) ◽  
pp. 1950164
Author(s):  
Qing-Feng Dong ◽  
Dian-Kun Chen ◽  
Ting Wang

At present, the detection of urban community structures is mainly based on existing administrative divisions, and is performed using qualitative methods. The lack of quantitative methods makes it difficult to judge the rationality of urban community divisions. In this study, we used complex network association mining methods to detect a city community structure by using the Origin-Destinations (OD) at traffic analysis zone (TAZ) level, and successively assigned all the TAZs into different communities. Based on the community results, we calculated the community core degree of each TAZ within every community, and then calculated the Traffic Core Degree and Location Core Degree indicators of the community based on OD passenger flow and spatial location relationship between communities. Finally, we analyzed the correlation among three indicators to ensure the rationality of the community structure. We used the city of Zhengzhou in 2016 as an example case study. For Zhengzhou, we detected a total of six communities. We found a relatively low correlation between Traffic Core Degree and Location Core Degree. Within each group, the correlation between community core degree and Traffic Core Degree was higher than that between community core degree and Location Core Degree, indicating that the urban community structure is more reasonably based on traffic characteristics. The development of a quantitative approach for determining reasonable city community structures has important implications for transportation planning and industrial layout.


2018 ◽  
Vol 9 (4) ◽  
pp. 52-70 ◽  
Author(s):  
Ameera Saleh Jaradat ◽  
Safa'a Bani Hamad

This article describes how parallel to the continuous growth of the Internet, which allows people to share and collaborate more, social networks have become more attractive as a research topic in many different disciplines. Community structures are established upon interactions between people. Detection of these communities has become a popular topic in computer science. How to detect the communities is of great importance for understanding the organization and function of networks. Community detection is considered a variant of the graph partitioning problem which is NP-hard. In this article, the Firefly algorithm is used as an optimization algorithm to solve the community detection problem by maximizing the modularity measure. Firefly algorithm is a new Nature-inspired heuristic algorithm that proved its good performance in a variety of applications. Experimental results obtained from tests on real-life networks demonstrate that the authors' algorithm successfully detects the community structure.


2019 ◽  
Vol 473 ◽  
pp. 31-43 ◽  
Author(s):  
Yi-Ming Wen ◽  
Ling Huang ◽  
Chang-Dong Wang ◽  
Kun-Yu Lin

2017 ◽  
Author(s):  
Christina Gkini ◽  
Alexios Brailas

We studied the community structure pattern in the visualizations of ten personal social networks on Facebook at a single point in time. It seems to be a strong tendency towards community formation in online personal, social networks: somebody’s friends are usually also friends between them, forming subgroups of more densely connected nodes. Research on community structure in social networks usually focuses on the networks’ statistical properties. There is a need for qualitative studies bridging the gap between network topologies and their sociological implications. To this direction, visual representations of personal networks in social media could be a valuable source of empirical data for qualitative interpretation. Most of the personal social networks’ visualizations in the present study are very highly clustered with densely-knit overlapping subgroups of friends and interconnected between them through wide bridges. This network topology pattern seems to be quite efficient, allowing for a fast spread and diffusion of information across the whole social network.


Sign in / Sign up

Export Citation Format

Share Document