A Convergence Acceleration Technique for Multiobjective Optimisation

Author(s):  
Salem F. Adra ◽  
Ian Griffin ◽  
Peter J. Fleming
2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Iman Borazjani ◽  
Fotis Sotiropoulos

We carry out three-dimensional high-resolution numerical simulations of a bileaflet mechanical heart valve under physiologic pulsatile flow conditions implanted at different orientations in an anatomic aorta obtained from magnetic resonance imaging (MRI) of a volunteer. We use the extensively validated for heart valve flow curvilinear-immersed boundary (CURVIB) fluid-structure interaction (FSI) solver in which the empty aorta is discretized with a curvilinear, aorta-conforming grid while the valve is handled as an immersed boundary. The motion of the valve leaflets are calculated through a strongly coupled FSI algorithm implemented in conjunction with the Aitken convergence acceleration technique. We perform simulations for three valve orientations, which differ from each other by 45 deg and compare the results in terms of leaflet motion and flow field. We show that the valve implanted symmetrically relative to the symmetry plane of the ascending aorta curvature exhibits the smallest overall asymmetry in the motion of its two leaflets and lowest rebound during closure. Consequently, we hypothesize that this orientation is beneficial to reduce the chance of intermittent regurgitation. Furthermore, we find that the valve orientation does not significantly affect the shear stress distribution in the aortic lumen, which is in agreement with previous studies.


2001 ◽  
Vol 3 (1) ◽  
pp. 6
Author(s):  
Mikhail D. Mikhailov ◽  
Renato M. Cotta

2021 ◽  
Vol 11 (3) ◽  
pp. 933
Author(s):  
Mario Lucido

The method of analytical preconditioning combines the discretization and the analytical regularization of a singular integral equation in a single step. In a recent paper by the author, such a method has been applied to a spectral domain integral equation formulation devised to analyze the propagation in polygonal cross-section microstrip lines, which are widely used as high-speed interconnects in monolithic microwave and millimeter waves integrated circuits. By choosing analytically Fourier transformable expansion functions reconstructing the behavior of the fields on the wedges, fast convergence is achieved, and the convolution integrals are expressed in closed form. However, the coefficient matrix elements are one-dimensional improper integrals of oscillating and, in the worst cases, slowly decaying functions. In this paper, a novel technique for the efficient evaluation of such kind of integrals is proposed. By means of a procedure based on Cauchy integral theorem, the general coefficient matrix element is written as a linear combination of fast converging integrals. As shown in the numerical results section, the proposed technique always outperforms the analytical asymptotic acceleration technique, especially when highly accurate solutions are required.


Sign in / Sign up

Export Citation Format

Share Document