internal irreversibility
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Isaac N. Simate

The energy and exergy analysis of an indirect-mode natural convection solar dryer for maize grain is presented. Two different sizes of maize grain bed depths of 0.04 m and 0.02 m translating into grain loads of 10 kg and 5 kg respectively, are used in the study to determine their effects on the collector energy and exergy efficiencies and the drying chamber exergy efficiency. Experiments were carried out using an indirect-mode laboratory solar dryer under a solar simulator with a radiation setting of 634.78 W/m2. The analysis gave average collector energy efficiencies of 33.3 % and 46.2 % for the 10 kg and 5 kg loads, respectively, which are higher than the collector exergy efficiencies of 2.4 % and 2.6 % for the 10 kg and 5 kg loads, respectively. The drying chamber exergy efficiencies are 45.2 % and 28.4 % for the 10 kg and 5 kg loads, respectively. In view of this, the 5 kg load is considered to be more efficient at extracting energy from the collector due to higher air flow resulting from its relatively thin grain bed depth of 0.02 m, but less efficient in utilising the extracted energy to evaporate moisture from the grain which has resulted in a lower drying chamber exergy efficiency. Further, the exergy loss in the drying chamber for the 5 kg load is higher than that in the 10 kg load as 72.3 % of the exergy entering the drying chamber is lost through emissions as well as destroyed through internal irreversibility compared to 57.0 % for the 10 kg load. 


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3416
Author(s):  
Gheorghe Dumitrașcu ◽  
Michel Feidt ◽  
Ştefan Grigorean

This paper develops simplifying entropic models of irreversible closed cycles. The entropic models involve the irreversible connections between external and internal main operational parameters with finite physical dimensions. The external parameters are the mean temperatures of external heat reservoirs, the heat transfers thermal conductance, and the heat transfer mean log temperatures differences. The internal involved parameters are the reference entropy of the cycle and the internal irreversibility number. The cycle’s design might use four possible operational constraints in order to find out the reference entropy. The internal irreversibility number allows the evaluation of the reversible heat output function of the reversible heat input. Thus the cycle entropy balance equation to design the trigeneration cycles only through external operational parameters might be involved. In designing trigeneration systems, they must know the requirements of all consumers of the useful energies delivered by the trigeneration system. The conclusions emphasize the complexity in designing and/or optimizing the irreversible trigeneration systems.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 504
Author(s):  
Monica Costea ◽  
Stoian Petrescu ◽  
Michel Feidt ◽  
Catalina Dobre ◽  
Bogdan Borcila

An irreversible Carnot cycle engine operating as a closed system is modeled using the Direct Method and the First Law of Thermodynamics for processes with Finite Speed. Several models considering the effect on the engine performance of external and internal irreversibilities expressed as a function of the piston speed are presented. External irreversibilities are due to heat transfer at temperature gradient between the cycle and heat reservoirs, while internal ones are represented by pressure losses due to the finite speed of the piston and friction. Moreover, a method for optimizing the temperature of the cycle fluid with respect to the temperature of source and sink and the piston speed is provided. The optimization results predict distinct maximums for the thermal efficiency and power output, as well as different behavior of the entropy generation per cycle and per time. The results obtained in this optimization, which is based on piston speed, and the Curzon–Ahlborn optimization, which is based on time duration, are compared and are found to differ significantly. Correction have been proposed in order to include internal irreversibility in the externally irreversible Carnot cycle from Curzon–Ahlborn optimization, which would be equivalent to a unification attempt of the two optimization analyses.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 425
Author(s):  
Ruibo Wang ◽  
Yanlin Ge ◽  
Lingen Chen ◽  
Huijun Feng ◽  
Zhixiang Wu

Using finite time thermodynamic theory, an irreversible steady-flow Lenoir cycle model is established, and expressions of power output and thermal efficiency for the model are derived. Through numerical calculations, with the different fixed total heat conductances (UT) of two heat exchangers, the maximum powers (Pmax), the maximum thermal efficiencies (ηmax), and the corresponding optimal heat conductance distribution ratios (uLP(opt)) and (uLη(opt)) are obtained. The effects of the internal irreversibility are analyzed. The results show that, when the heat conductances of the hot- and cold-side heat exchangers are constants, the corresponding power output and thermal efficiency are constant values. When the heat source temperature ratio (τ) and the effectivenesses of the heat exchangers increase, the corresponding power output and thermal efficiency increase. When the heat conductance distributions are the optimal values, the characteristic relationships of P-uL and η-uL are parabolic-like ones. When UT is given, with the increase in τ, the Pmax, ηmax, uLP(opt), and uLη(opt) increase. When τ is given, with the increase in UT, Pmax and ηmax increase, while uLP(opt) and uLη(opt) decrease.


Author(s):  
Vladimir Grigorievich Bukin ◽  
Alexey Vasilievich Ezhov ◽  
Aleksander Ivanovich Andreev

The article represents the advantages and disadvantages of refrigeration machines operating on non-azeotropic refrigerant mixtures. There has been illustrated their specific feature in comparison with pure substances: they are non-isothermal during phase transitions. It can be effective when cooling or heating flows that significantly change the temperature, and ineffective when working with volumes, where it is necessary to maintain a constant temperature. In the first case there takes place a decrease in the internal irreversibility of heat transfer processes in evaporators and condensers; in the second case - an increase. When using mixed refrigerants, it is possible to simultaneously obtain several temperature levels in a single-stage machine at the same pressure in the evaporators, they can obtain low boiling points of the refrigerant without vacuum in the evaporator and regulate the refrigeration capacity of the machine by changing the composition of the mixture. The prospects of using mixtures of working bodies of refrigerating machines have been proved. The diagrams T-S, T-ξ, i-ξ are presented allowing to calculate the cycle of the machine, to determine its operating parameters and to calculate the technical and energy characteristics. The developed thermal diagrams make it possible to accurately examine the dynamics of the boiling and condensation processes of a binary mixture, show the change in the concentration of the mixture in the vapor and liquid phases and make it possible to construct and calculate the cycle of a refrigeration machine operating on a mixed refrigerant. Examples of constructing cycles of two schemes of refrigeration machines operating on a mixed refrigerant are considered: with separation of the working substance flow and without separation. Methods for calculating the cycle are provided


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Khursheed Afroz Ansari ◽  
Md. Azhar ◽  
M. Altamush Siddiqui

Abstract In the present communication, internal irreversibility at each component of a single-effect vapor absorption refrigeration system has been evaluated and presented. The irreversibility is induced owing to the pressure drop in the shell and tube and energy exchange between the working fluids. Each component of the system is considered to be a shell and tube-type energy exchanger with slight modifications depending upon the applications. Each energy exchanger is divided into three control volumes, namely, tube wall, shell, and tube for which both energy and exergy balances are applied to evaluate the exergy destruction rate (EDR). Moreover, the overall EDR in the energy exchanger is then estimated in the form of pumping work and energy exchange duty. This objective function is further simplified in the form of design parameters such as tube diameter, friction coefficient, number of tubes, number of baffles, and overall heat transfer coefficient for the energy exchanger. In addition to this, optimum generator temperature and minimum EDR of each component of the absorption system have been tabulated and presented. Results show that for a single tube, UA value in the system component ranges from 2.99 W/K to 48.9 W/K depending on the operating conditions and design parameters of the system. Also, the number of tube in the system components ranges from 1108 tubes to 24803 tubes and the number of baffles in the respective components ranges from 2 to 7.


Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 37
Author(s):  
Gheorghe Dumitrascu ◽  
Michel Feidt ◽  
Stefan Grigorean

The paper develops generalizing entropic approaches of irreversible closed cycles. The mathematical models of the irreversible engines (basic, with internal regeneration of the heat, cogeneration units) and of the refrigeration cycles were applied to four possible operating irreversible trigeneration cycles. The models involve the reference entropy, the number of internal irreversibility, the thermal conductance inventory, the proper temperatures of external heat reservoirs unifying the first law of thermodynamics and the linear heat transfer law, the mean log temperature differences, and four possible operational constraints, i.e., constant heat input, constant power, constant energy efficiency and constant reference entropy. The reference entropy is always the entropy variation rate of the working fluid during the reversible heat input process. The amount of internal irreversibility allows the evaluation of the heat output via the ratio of overall internal irreversible entropy generation and the reference entropy. The operational constraints allow the replacement of the reference entropy function of the finite physical dimension parameters, i.e., mean log temperature differences, thermal conductance inventory, and the proper external heat reservoir temperatures. The paper presents initially the number of internal irreversibility and the energy efficiency equations for engine and refrigeration cycles. At the limit, i.e., endoreversibility, we can re-obtain the endoreversible energy efficiency equation. The second part develops the influences between the imposed operational constraint and the finite physical dimensions parameters for the basic irreversible cycle. The third part is applying the mathematical models to four possible standalone trigeneration cycles. It was assumed that there are the required consumers of the all useful heat delivered by the trigeneration system. The design of trigeneration system must know the ratio of refrigeration rate to power, e.g., engine shaft power or useful power delivered directly to power consumers. The final discussions and conclusions emphasize the novelties and the complexity of interconnected irreversible trigeneration systems design/optimization.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 913 ◽  
Author(s):  
Michel Feidt ◽  
Monica Costea

The need for cooling is more and more important in current applications, as environmental constraints become more and more restrictive. Therefore, the optimization of reverse cycle machines is currently required. This optimization could be split in two parts, namely, (1) the design optimization, leading to an optimal dimensioning to fulfill the specific demand (static or nominal steady state optimization); and (2) the dynamic optimization, where the demand fluctuates, and the system must be continuously adapted. Thus, the variability of the system load (with or without storage) implies its careful control-command. The topic of this paper is concerned with part (1) and proposes a novel and more complete modeling of an irreversible Carnot refrigerator that involves the coupling between sink (source) and machine through a heat transfer constraint. Moreover, it induces the choice of a reference heat transfer entropy, which is the heat transfer entropy at the source of a Carnot irreversible refrigerator. The thermodynamic optimization of the refrigerator provides new results regarding the optimal allocation of heat transfer conductances and minimum energy consumption with associated coefficient of performance (COP) when various forms of entropy production owing to internal irreversibility are considered. The reported results and their consequences represent a new fundamental step forward regarding the performance upper bound of Carnot irreversible refrigerator.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 397 ◽  
Author(s):  
Lingen Chen ◽  
Yanlin Ge ◽  
Chang Liu ◽  
Huijun Feng ◽  
Giulio Lorenzini

Considering the finite time characteristic, heat transfer loss, friction loss and internal irreversibility loss, an air standard reciprocating heat-engine cycle model is founded by using finite time thermodynamics. The cycle model, which consists of two endothermic processes, two exothermic processes and two adiabatic processes, is well generalized. The performance parameters, including the power output and efficiency (PAE), are obtained. The PAE versus compression ratio relations are obtained by numerical computation. The impacts of variable specific heats ratio (SHR) of working fluid (WF) on universal cycle performances are analyzed and various special cycles are also discussed. The results include the PAE performance characteristics of various special cycles (including Miller, Dual, Atkinson, Brayton, Diesel and Otto cycles) when the SHR of WF is constant and variable (including the SHR varied with linear function (LF) and nonlinear function (NLF) of WF temperature). The maximum power outputs and the corresponding optimal compression ratios, as well as the maximum efficiencies and the corresponding optimal compression ratios for various special cycles with three SHR models are compared.


Sign in / Sign up

Export Citation Format

Share Document