integral theorem
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 19)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Евгений Валерьевич Мурашкин ◽  
Юрий Николаевич Радаев

Ориентируемые континуумы играют важную роль в микрополярной теории упругости, все реализации которой возможны только в рамках псевдотензорного формализма и представления об ориентируемом многообразии. Особенно это касается теории микрополярных гемитропных упругих сред. В настоящей работе рассматриваются различные формулировки интегральной теоремы Стокса для асимметричного ковариантного пседотензорного поля, заданного веса. Тем самым достигается распространение известной интегральной формулы Стокса на случай псевдотензоров. Последнее обстоятельство позволяет использовать, указанное обобщение для микрополярных континуумов. Исследование существенно опирается на класс специальных координатных систем. Oriented continua play an important role in the micropolar theory of elasticity, all realizations of which are possible only within the framework of the pseudotensor formalism and the orientable manifold concept. This especially concerns the theory of micropolar hemitropic elastic media. In this paper, we consider various formulations of the Stokes integral theorem for an asymmetric covariant pseudotensor field of a given weight. This extends the well-known Stokes integral formula to the case of pseudotensors. The latter circumstance makes it possible to use the manifistated generalization for micropolar continua. The study relies heavily on the class of special coordinate systems.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Sadra Jazayeri ◽  
Enrico Pajer ◽  
David Stefanyszyn

Abstract In the standard approach to deriving inflationary predictions, we evolve a vacuum state in time according to the rules of a given model. Since the only observables are the future values of correlators and not their time evolution, this brings about a large degeneracy: a vast number of different models are mapped to the same minute number of observables. Furthermore, due to the lack of time-translation invariance, even tree-level calculations require an increasing number of nested integrals that quickly become intractable. Here we ask how much of the final observables can be “bootstrapped” directly from locality, unitarity and symmetries.To this end, we introduce two new “boostless” bootstrap tools to efficiently compute tree-level cosmological correlators/wavefunctions without any assumption about de Sitter boosts. The first is a Manifestly Local Test (MLT) that any n-point (wave)function of massless scalars or gravitons must satisfy if it is to arise from a manifestly local theory. When combined with a sub-set of the recently proposed Bootstrap Rules, this allows us to compute explicitly all bispectra to all orders in derivatives for a single scalar. Since we don’t invoke soft theorems, this can also be extended to multi-field inflation. The second is a partial energy recursion relation that allows us to compute exchange correlators. Combining a bespoke complex shift of the partial energies with Cauchy’s integral theorem and the Cosmological Optical Theorem, we fix exchange correlators up to a boundary term. The latter can be determined up to contact interactions using unitarity and manifest locality. As an illustration, we use these tools to bootstrap scalar inflationary trispectra due to graviton exchange and inflaton self-interactions.


2021 ◽  
Vol 11 (3) ◽  
pp. 933
Author(s):  
Mario Lucido

The method of analytical preconditioning combines the discretization and the analytical regularization of a singular integral equation in a single step. In a recent paper by the author, such a method has been applied to a spectral domain integral equation formulation devised to analyze the propagation in polygonal cross-section microstrip lines, which are widely used as high-speed interconnects in monolithic microwave and millimeter waves integrated circuits. By choosing analytically Fourier transformable expansion functions reconstructing the behavior of the fields on the wedges, fast convergence is achieved, and the convolution integrals are expressed in closed form. However, the coefficient matrix elements are one-dimensional improper integrals of oscillating and, in the worst cases, slowly decaying functions. In this paper, a novel technique for the efficient evaluation of such kind of integrals is proposed. By means of a procedure based on Cauchy integral theorem, the general coefficient matrix element is written as a linear combination of fast converging integrals. As shown in the numerical results section, the proposed technique always outperforms the analytical asymptotic acceleration technique, especially when highly accurate solutions are required.


2020 ◽  
pp. 107754632096259
Author(s):  
Shota Yabui ◽  
Hideyuki Inoue ◽  
Tsuyoshi Inoue

Synchronous vibration is a major obstacle to the stable operation of rotating machineries. In previous studies, active control methods were developed to compensate for synchronous vibration using actuators, such as an active magnetic bearing or a piezo actuator. Adaptive feedforward cancellation is another well-known control method and is used to compensate for the synchronous vibration in the actual system. The control methods can compensate for the synchronous vibration; however, the amplitude of the vibration in other frequency ranges can be increased by the waterbed effect due to Bode’s integral theorem. Therefore, there is a trade-off between the compensation of the synchronous vibration and the negative impact of other vibration. In this article, a novel control scheme for the adaptive feedforward cancellation is proposed to eliminate the negative impact due to the waterbed effect. The proposed method controlled the input signal of the adaptive algorithm in the adaptive feedforward cancellation and realized an ideal feedforward controller worked independently from the feedback loop. The effectiveness of this method was verified experimentally using a test rig.


Author(s):  
Wenzhang Huang ◽  
Chufen Wu

We propose and investigate a stage-structured SLIRM epidemic model with latent period in a spatially continuous habitat. We first show the existence of semi-travelling waves that connect the unstable disease-free equilibrium as the wave coordinate goes to − ∞, provided that the basic reproduction number $\mathcal {R}_0 > 1$ and $c > c_*$ for some positive number $c_*$ . We then use a combination of asymptotic estimates, Laplace transform and Cauchy's integral theorem to show the persistence of semi-travelling waves. Based on the persistent property, we construct a Lyapunov functional to prove the convergence of the semi-travelling wave to an endemic (positive) equilibrium as the wave coordinate goes to + ∞. In addition, by the Laplace transform technique, the non-existence of bounded semi-travelling wave is also proved when $\mathcal {R}_0 > 1$ and $0 < c < c_*$ . This indicates that $c_*$ is indeed the minimum wave speed. Finally simulations are given to illustrate the evolution of profiles.


2020 ◽  
Vol 25 (3) ◽  
pp. 323-337
Author(s):  
Souvik Kundu ◽  
Rupanwita Gayen

Wave interaction with a vertical elastic plate in presence of undulating bottom topography is considered, assuming linear theory and utilizing simple perturbation analysis. First order correction to the velocity potential corresponding to the problem of scattering by a vertical elastic plate submerged in a fluid with a uniform bottom is obtained by invoking the Green’s integral theorem in a suitable manner. With sinusoidal undulation at the bottom, the first-order transmission coefficient (T1) vanishes identically. Behaviour of the first order reflection coefficient (R1) depending on the plate length, ripple number, ripple amplitude and flexural rigidity of the plate is depicted graphically. Also, the resonant nature of the first order reflection is observed at a particular value of the ratio of surface wavelength to that of the bottom undulations. The net reflection coefficient due to the joint effect of the plate and the bottom undulation is also presented for different flexural rigidity of the plate. When the rigidity parameter is made sufficiently large, the results for R1 reduce to the known results for a surface piercing rigid plate in water with bottom undulation.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 501
Author(s):  
Jean Mawhin

This paper surveys some recent simple proofs of various fixed point and existence theorems for continuous mappings in R n . The main tools are basic facts of the exterior calculus and the use of retractions. The special case of holomorphic functions is considered, based only on the Cauchy integral theorem.


2020 ◽  
Vol 21 (3) ◽  
pp. 39-58
Author(s):  
Vladimirovich Vostokov Sergey ◽  
Yurievich Shashkov Timofei ◽  
Sergeevna Afanas’eva Sofya

Sign in / Sign up

Export Citation Format

Share Document