pump performance
Recently Published Documents


TOTAL DOCUMENTS

773
(FIVE YEARS 157)

H-INDEX

29
(FIVE YEARS 6)

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 61
Author(s):  
Zhenfa Xu ◽  
Fanyu Kong ◽  
Lingfeng Tang ◽  
Mingwei Liu ◽  
Jiaqiong Wang ◽  
...  

Blade thickness is an essential parameter of the impeller, which has significant effects on the pump performance. The plastic pump generally adopts thick blade due to low strength of plastic. The effects of blade thickness on the internal flow and performance of a plastic centrifugal pump were discussed based on the numerical methods. Two kinds of blade profile, the constant thickness blade (CTB) and the variable thickness blade (VTB), were investigated. The results indicated that, for the CTB, when the blade thickness was less than 6 mm, the pump performance did not change significantly. When the blade thickness exceeded 6 mm, the pump head and efficiency decreased rapidly. The pump head and efficiency of CTB 10 decreased by 42.2% and 30% compared with CTB 4, respectively. For the VTB, with blade thickness in a certain range (6 mm–14 mm), the pump performance changed slightly with the increased of trailing edge thickness. The minimum blade thickness of the plastic centrifugal pump should be 4 mm based on the finite element analysis. A variable thickness blade (VTB 4-8-4) with the maximum thickness located at 60% chord length was proposed to improve the pump performance, and its efficiency was 1.67% higher than that of the CTB 4 impeller.


2022 ◽  
Vol 10 (1) ◽  
pp. 103
Author(s):  
Xijie Song ◽  
Chao Liu ◽  
Zhengwei Wang

The vortex in a pump sump is a negative problem for the pump unit, which can lead to the decline of pump performance. Focusing on the internal pressure characteristics of the floor-attached vortex (FAV) and its influence on the pump unit, the FAV was analyzed adopting the previously verified numerical simulation method and experiment. The results show that the pressure in the vortex core gradually decreases with time, drops to a negative pressure at the development stage, and then reaches the lowest pressure during the continuance stage. When the negative pressure of the vortex tube is around the vaporization pressure of the continuance stage, it can cause a local cavitation at the impeller inlet. The evolution of the FAV is accompanied by a change of pressure gradient in the vortex core which is discussed in detail. This research provides theoretical guidance for a better understanding of the vortex characteristics and the optimal design for the pump.


Author(s):  
Hadi Ayremlouzadeh ◽  
Samad Jafarmadar ◽  
Seyed Reza Amini Niaki

In order to investigate the effect of blade design on pump performance, a CFD analysis was carried out, and the results were compared with experimental performance data of a low specific speed radial pump, which presents a good agreement. After model verification, the effect of impeller geometrical parameters includes blade outlet angle, wrap angle, and width at the exit, was investigated on the pump’s performance. Moreover, these parameters were chosen on three levels using an L9 orthogonal standard array of the Taguchi optimization method. The efficient levels of variables were calculated using the analysis of variance (ANOVA) method. The results revealed that impeller width at exit and blade outlet angle is the most effective pump shaft power and efficiency parameters. To minimize power, the optimal levels are the outlet angle of 27∘∘, wrap angle of 150∘∘, and width at the exit of 9 mm. Further, an outlet angle of 23∘∘, a wrap angle of 155∘∘, and a width at the exit of 9 mm lead to maximum pump efficiency. According to the validation simulations, an increase of 2.4% inefficiency and a minimum power of 3.9KW were achieved. The Overall Evaluation Criteria (OEC) technique revealed that considering 23∘∘, 160∘∘, and 9 mm for outlet angle, wrap angle, and width at the exit, minimum shaft power, and maximum pump efficiency will be achieved. ANOVA introduced width at the exit as the most governing parameter of pump performance characteristics.


Author(s):  
Hayder Kareem Sakran ◽  
Mohd Sharizal Abdul Aziz ◽  
M. Z. Abdullah ◽  
C. Y. Khor

Author(s):  
Ahmet Onder ◽  
Rafet Yapici ◽  
Omer Incebay

The use of substitute fluid with similar rheological properties instead of blood is important due to ethical concerns and high blood volume consumption in pump performance test before clinical applications. The performance of a centrifugal blood pump with hydrodynamic journal bearing is experimentally tested using Newtonian 40% aqueous glycerin solution (GS) and non-Newtonian aqueous xanthan gum solution of 600 ppm (XGS) as working fluids. Experiments are performed at four different rotational speeds which are 2700, 3000, 3300, and 3600 rpm; experiments using GS reach between 8.5% and 37.2% higher head curve than experiments using the XGS for every rotational speed. It was observed that as the rotational speed and flow rate increase, the head curve difference between GS and XGS decreases. This result can be attributed to the friction reduction effect when using XGS in experiments at high rotation speed and high flow rate. Moreover, due to different fluid viscosities, differences in hydraulic efficiency were observed for both fluids. This study reveals that the use of Newtonian fluids as working fluids is not sufficient to determine the actual performance of a blood pump, and the performance effects of non-Newtonian fluids are remarkably important in pump performance optimizations.


2022 ◽  
Vol 10 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Faye Jin ◽  
Ran Tao ◽  
Ruofu Xiao

The blade shape parameters have a remarkable effect on the centrifugal pump performance. In order to reveal the relationship between these parameters and pump performance, a single channel was regarded as the research object to calculate its performance by numerical simulation, and the performance was measured on an experimental rig. The optimized ANN is proposed, and it is proved to be highly accurate. The ANN correlation coefficient of the total response could be above 0.997 after thousands of retaining. The sorts and degrees affecting performance parameters were found out by gray relation analysis. It was found that the blade angles at the leading edge were more influential for reaction force, head and minimum pressure, while the wrap angles had greater impact for efficiency. Furthermore, a multiple linear regression model was established to quantify the weight and trend of the influence of blade shape parameters on performance. The results provide a reference guide for the optimized design of centrifugal impeller to improve pump performance.


Author(s):  
Sadek Z. Kassab ◽  
Abdelrahman A. Abdelrazek ◽  
Eslam R. Lotfy

Author(s):  
Xutao Zhao ◽  
Desheng Zhang ◽  
Renhui Zhang ◽  
Bin Xu

Accurate prediction of performance indices using impeller parameters is of great importance for the initial and optimal design of centrifugal pump. In this study, a kernel-based non-parametric machine learning method named with Gaussian process regression (GPR) was proposed, with the purpose of predicting the performance of centrifugal pump with less effort based on available impeller parameters. Nine impeller parameters were defined as model inputs, and the pump performance indices, that is, the head and efficiency, were determined as model outputs. The applicability of three widely used nonlinear kernel functions of GPR including squared exponential (SE), rational quadratic (RQ) and Matern5/2 was investigated, and it was found by comparing with the experimental data that the SE kernel function is more suitable to capture the relationship between impeller parameters and performance indices because of the highest R square and the lowest values of max absolute relative error (MARE), mean absolute proportional error (MAPE), and root mean square error (RMSE). In addition, the results predicted by GPR with SE kernel function were compared with the results given by other three machine learning models. The comparison shows that the GPR with SE kernel function is more accurate and robust than other models in centrifugal pump performance prediction, and its prediction errors and uncertainties are both acceptable in terms of engineering applications. The GPR method is less costly in the performance prediction of centrifugal pump with sufficient accuracy, which can be further used to effectively assist the design and manufacture of centrifugal pump and to speed up the optimization design process of impeller coupled with stochastic optimization methods.


2021 ◽  
Vol 14 (2) ◽  
pp. 75-79
Author(s):  
Ichlas Nur ◽  
Nota Effiandi ◽  
Vera Veronica

This 2019 DIPA Grand’s research designed and fabricated the size of hydraulic ram (hydram) pump utilized in Pakandangan, Padang Pariaman Regency. There is a water source in this area which has not been functioned adequately to irrigate the paddy field of 10 hectares due to the location of the paddy field which is higher than the water source. However, the use of designed hydram pump has no been maximized as the pump’s optimal performance was not determined yet. Therefore, a hydram pump was designed by varying the load of waste valve in the weight of 400 g, 600 g, 800 g, 1,000 g, and 1,200 gr. It was also varied in the volume of the chamber when the pump operated which were 4.86 lt, 5.76 lt, 6.48 lt, 7.29 lt, and 8.1lt. The height (Hd) of the inlet pipe was 1 m, and the lift height (Hs) of the outlet pipe was 5 m. The results obtained from Pump performance increases with increasing cylinder volume. The increase in the load of the exhaust valve volume of the tube remains a significant decrease. Hydram pump performance occurs at a load of 400 g with a tube volume of 8.1 l with an efficiency of 53%


Sign in / Sign up

Export Citation Format

Share Document