Every finite division ring is a field

2010 ◽  
pp. 31-34
Author(s):  
Martin Aigner ◽  
Günter M. Ziegler
Keyword(s):  
1954 ◽  
Vol 60 (3) ◽  
pp. 571 ◽  
Author(s):  
I. N. Herstein
Keyword(s):  

1999 ◽  
Vol 51 (3) ◽  
pp. 488-505 ◽  
Author(s):  
W. D. Burgess ◽  
Manuel Saorín

AbstractThis article studies algebras R over a simple artinian ring A, presented by a quiver and relations and graded by a semigroup Σ. Suitable semigroups often arise from a presentation of R. Throughout, the algebras need not be finite dimensional. The graded K0, along with the Σ-graded Cartan endomorphisms and Cartan matrices, is examined. It is used to study homological properties.A test is found for finiteness of the global dimension of a monomial algebra in terms of the invertibility of the Hilbert Σ-series in the associated path incidence ring.The rationality of the Σ-Euler characteristic, the Hilbert Σ-series and the Poincaré-Betti Σ-series is studied when Σ is torsion-free commutative and A is a division ring. These results are then applied to the classical series. Finally, we find new finite dimensional algebras for which the strong no loops conjecture holds.


2016 ◽  
Vol 15 (08) ◽  
pp. 1650148 ◽  
Author(s):  
Simion Breaz ◽  
Peter Danchev ◽  
Yiqiang Zhou

Generalizing the notion of nil-cleanness from [A. J. Diesl, Nil clean rings, J. Algebra 383 (2013) 197–211], in parallel to [P. V. Danchev and W. Wm. McGovern, Commutative weakly nil clean unital rings, J. Algebra 425 (2015) 410–422], we define the concept of weak nil-cleanness for an arbitrary ring. Its comprehensive study in different ways is provided as well. A decomposition theorem of a weakly nil-clean ring is obtained. It is completely characterized when an abelian ring is weakly nil-clean. It is also completely determined when a matrix ring over a division ring is weakly nil-clean.


1998 ◽  
pp. 23-26
Author(s):  
Martin Aigner ◽  
Günter M. Ziegler
Keyword(s):  

1957 ◽  
Vol 9 ◽  
pp. 336-346
Author(s):  
N. A. Wiegmann

1. Introduction. Burnside's Theorem in the theory of group representations states that a necessary and sufficient condition that a semigroup of matrices of degree n over the complex field be irreducible is that the semigroup contain n2 linearly independent matrices. In the course of dealing with sets of matrices with coefficients in a division ring, Brauer (1) obtained a generalization of this theorem which concerned irreducible semigroups with elements in a division ring.


1973 ◽  
Vol 25 (4) ◽  
pp. 881-887 ◽  
Author(s):  
E. D. Elgethun

In [8] I. N. Herstein conjectured that all the finite odd order sub-groups of the multiplicative group in a division ring are cyclic. This conjecture was proved false in general by S. A. Amitsur in [1]. In his paper Amitsur classifies all finite groups which can appear as a multiplicative subgroup of a division ring. Let D be a division ring with prime field k and let G be a finite group isomorphic to a multiplicative subgroup of D.


1989 ◽  
Vol 41 (1) ◽  
pp. 14-67 ◽  
Author(s):  
M. Chacron

Let D stand for a division ring (or skewfield), let G stand for an ordered abelian group with positive infinity adjoined, and let ω: D → G. We call to a valuation of D with value group G, if ω is an onto mapping from D to G such that(i) ω(x) = ∞ if and only if x = 0,(ii) ω(x1 + x2) = min(ω (x1), ω (x2)), and(iii) ω (x1 x2) = ω (x1) + ω (x2).Associated to the valuation ω are its valuation ringR = ﹛x ∈ Dω(x) ≧ 0﹜,its maximal idealJ = ﹛x ∈ |ω(x) > 0﹜, and its residue division ring D = R/J.The invertible elements of the ring R are called valuation units. Clearly R and, hence, J are preserved under conjugation so that 1 + J is also preserved under conjugation. The latter is thus a normal subgroup of the multiplicative group Dm of D and hence, the quotient group D˙/1 + J makes sense (the residue group of ω). It enlarges in a natural way the residue division ring D (0 excluded, and addition “forgotten“).


Sign in / Sign up

Export Citation Format

Share Document