Adaboosting Neural Networks for Credit Scoring

Author(s):  
Ligang Zhou ◽  
Kin Keung Lai
Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1318
Author(s):  
Yoichi Hayashi ◽  
Naoki Takano

Convolution neural networks (CNNs) have proven effectiveness, but they are not applicable to all datasets, such as those with heterogeneous attributes, which are often used in the finance and banking industries. Such datasets are difficult to classify, and to date, existing high-accuracy classifiers and rule-extraction methods have not been able to achieve sufficiently high classification accuracies or concise classification rules. This study aims to provide a new approach for achieving transparency and conciseness in credit scoring datasets with heterogeneous attributes by using a one-dimensional (1D) fully-connected layer first CNN combined with the Recursive-Rule Extraction (Re-RX) algorithm with a J48graft decision tree (hereafter 1D FCLF-CNN). Based on a comparison between the proposed 1D FCLF-CNN and existing rule extraction methods, our architecture enabled the extraction of the most concise rules (6.2) and achieved the best accuracy (73.10%), i.e., the highest interpretability–priority rule extraction. These results suggest that the 1D FCLF-CNN with Re-RX with J48graft is very effective for extracting highly concise rules for heterogeneous credit scoring datasets. Although it does not completely overcome the accuracy–interpretability dilemma for deep learning, it does appear to resolve this issue for credit scoring datasets with heterogeneous attributes, and thus, could lead to a new era in the financial industry.


2002 ◽  
pp. 154-166 ◽  
Author(s):  
David West ◽  
Cornelius Muchineuta

Some of the concerns that plague developers of neural network decision support systems include: (a) How do I understand the underlying structure of the problem domain; (b) How can I discover unknown imperfections in the data which might detract from the generalization accuracy of the neural network model; and (c) What variables should I include to obtain the best generalization properties in the neural network model? In this paper we explore the combined use of unsupervised and supervised neural networks to address these concerns. We develop and test a credit-scoring application using a self-organizing map and a multilayered feedforward neural network. The final product is a neural network decision support system that facilitates subprime lending and is flexible and adaptive to the needs of e-commerce applications.


2009 ◽  
Vol 10 (3) ◽  
pp. 233-240 ◽  
Author(s):  
Huseyin Ince ◽  
Bora Aktan

Credit scoring is a very important task for lenders to evaluate the loan applications they receive from consumers as well as for insurance companies, which use scoring systems today to evaluate new policyholders and the risks these prospective customers might present to the insurer. Credit scoring systems are used to model the potential risk of loan applications, which have the advantage of being able to handle a large volume of credit applications quickly with minimal labour, thus reducing operating costs, and they may be an effective substitute for the use of judgment among inexperienced loan officers, thus helping to control bad debt losses. This study explores the performance of credit scoring models using traditional and artificial intelligence approaches: discriminant analysis, logistic regression, neural networks and classification and regression trees. Experimental studies using real world data sets have demonstrated that the classification and regression trees and neural networks outperform the traditional credit scoring models in terms of predictive accuracy and type II errors.


Author(s):  
Aneta Dzik-Walczak ◽  
Mateusz Heba

Credit scoring has become an important issue because competition among financial institutions is intense and even a small improvement in predictive accuracy can result in significant savings. Financial institutions are looking for optimal strategies using credit scoring models. Therefore, credit scoring tools are extensively studied. As a result, various parametric statistical methods, non-parametric statistical tools and soft computing approaches have been developed to improve the accuracy of credit scoring models. In this paper, different approaches are used to classify customers into those who repay the loan and those who default on a loan. The purpose of this study is to investigate the performance of two credit scoring techniques, the logistic regression model estimated on categorized variables modified with the use of WOE (Weight of Evidence) transformation, and neural networks. We also combine multiple classifiers and test whether ensemble learning has better performance. To evaluate the feasibility and effectiveness of these methods, the analysis is performed on Lending Club data. In addition, we investigate Peer-to-peer lending, also called social lending. From the results, it can be concluded that the logistic regression model can provide better performance than neural networks. The proposed ensemble model (a combination of logistic regression and neural network by averaging the probabilities obtained from both models) has higher AUC, Gini coefficient and Kolmogorov-Smirnov statistics compared to other models. Therefore, we can conclude that the ensemble model allows to successfully reduce the potential risks of losses due to misclassification costs.


Sign in / Sign up

Export Citation Format

Share Document